Домой / Утепление / Наработка плутония. Плутоний. Описание плутония. Свойства плутония. Предыстория и история

Наработка плутония. Плутоний. Описание плутония. Свойства плутония. Предыстория и история

Существует 15 известных изотопов плутония. Самый важный из них – Pu-239 с периодом полураспада 24360 лет. Удельная масса плутония составляет 19,84 при температуре 25оС. Металл начинает плавиться при температуре 641оС, закипает при 3232оС. Его валентность бывает 3, 4, 5 или 6.

У металла серебристый оттенок, и он желтеет при взаимодействии с кислородом. Плутоний – химический реактивный металл и легко растворяется в концентрированной соляной , в хлорной кислоте, в йодисто-водородной кислоте. При -распаде металл выделяет энергию тепла.

Плутоний - открытый вторым по счету трансурановый актинид. В природе этот металл можно обнаружить в небольших количествах в уранических рудах.

Плутоний ядовит и требует аккуратного обращения. Наиболее расщепляемый изотоп плутония использовался в качестве в ядерном оружии. В частности, его применяли в бомбе, которая была сброшена на японский город Нагасаки.

Это радиоактивный яд, накапливающийся в костном мозге. При проведении экспериментов над людьми в целях изучения плутония произошло несколько несчастных случаев, некоторые с летальным исходом. Важно, чтобы плутоний не достиг критической массы. В растворе плутоний быстрее образует критическую массу, чем в твердом состоянии.

Атомное число 94 означает, что все атомы плутония имеют 94 . На воздухе на поверхности металла образуется оксид плутония. Этот оксид пирофорный, поэтому тлеющий плутоний будет мерцать, как зола.

Существует шесть аллотропных форм плутония. Седьмая форма появляется при высоких температурах.

В водном растворе плутоний меняет цвет. На поверхности металла появляются различные оттенки по мере его окисления. Процесс окисления нестабилен, и цвет плутония может внезапно меняться.

В отличие от большинства веществ, плутоний уплотняется, когда плавится. В расплавленном состоянии этот элемент более вязкий, чем другие металлы.

Металл применяется в радиоактивных изотопах в термоэлектрических генераторах, на которых работают космические корабли. В медицине его применяют при производстве электронных стимуляторов для сердца.

Вдыхание паров плутония опасно для здоровья. В некоторых случаях это может спровоцировать рак легких. У вдыхаемого плутония металлический привкус.

Композиция изотопов плутония, накапливающегося в реакторе в результате реакций, происходящих в урановом топливе, зависит от степени выгорания топлива. Из 5 основных образовавшихся изотопов 2 с нечетными массовыми номерами – 239 Pu и 241 Pu являются ращепляющимися, т.е. способными к ращеплению под действием тепловых нейтронов, и в ринципе могут быть использованы в качестве реакторного топлива. Поэтому, если речь идет о возможности использования плутония в качестве реакторного топлива, значение имеет количестио накоплен-ного 239Pu и 241Pu. Для ядерного же оружия необходим практически чистый 239Pu т.к. излучатели нейтронов 240Pu и 238Pu могут спонтанно вызвать “пред-начальное воспламенение”, а это приведет к существенно меньшей силе взрыва атомной бомбы. Поэтому разница в “качестве” плутония обычно определяется его изотопным составом.

239 Pu накапливаеться в обычном энергетическом реакторе на урановом топливе в результате нейтронного захвата изотопом 238 U.Одновременно с этим происходит основная реакция деления изотопа 235 U сопровождающаяся выдел поэтому для того, чтобы его можно было использовать в качестве топлива в легководных реакторвах, естественный уран обогащают, доводя содержание 235 U до 3-4%. После одного года работы типичного ЛВР мощностью 1000 МВт образуется около 200 кг плутония из которых около 150 кг составляет 239 Pu.

Таблица 2 - Виды плутония.

Таким образом, при работе атомного уранового реактора в его топливных стержнях накапливаются различные изотопы плутония.

Плутоний, производимый в топливных элементах обычных промышленных атомных реакторов, подвергшихся экспозиции 33000 МВт*сут/т уранового топлива, имеет приблизительно следующий изотопный состав:

Таблица 3 - Изотопный состав реакторного плутония (степень выгорания 30-40 МВт*сут/кг).

Лишь два из пяти изотопов плутония, 239 Pu и 241 Pu, являются расщепляющимися (делящимися), т.е. способными к расщеплению в результате захвата тепловых (медленных) нейтронов, и в принципе пригодны для использования в качестве реакторного топлива. Поэтому, если речь идет о возможности использования плутония в качестве реакторного топлива, важно знать только количество 239 Pu и 241 Pu, обозначаемое Puf от слов Pu (плутоний) и fissile (делящийся). Полное же количество всех изотопов плутония обозначается Put от слова total (полный, общий, итоговый).

Для ядерного же оружия желательно иметь практически чистый 239 Pu, поскольку изотопы 240 Pu и 238 Pu самопроизвольно испускают нейтроны, которые могут вызвать т. н. «предначальное воспламенение», а это приведет к существенно меньшей силе взрыва атомной бомбы. Поэтому принято классифицировать плутоний по "качеству" в соответствии с его изотопным составом.

Хотя предначальное воспламенение уменьшает мощность взрыва ядерного взрывного устройства, изготовленного из реакторного плутония, можно утверждать, что мощность взрыва сравнительно простого взрывного устройства из реакторного плутония, подобного бомбе, взорванной в Нагасаки, будет равно примерно одной или нескольким килотоннам, даже если предначальное воспламенение произойдет в наименее благоприятный момент. В Японии и некоторых европейских странах сторонники плутония продолжают утверждать, что из-за предначального воспламенения реакторный плутоний практически не может быть использован в ядерном оружии, и что поэтому плутониевые программы в этих странах, основанные на выделении и использовании реакторного плутония, следует рассматривать исключительно как «мирные». Однако это мнение противоречит фактам, признанным международной научной общественностью. В докладе американской Национальной Академии наук, выпущенном в 1994 году и посвященном утилизации ядерных оружейных материалов, утверждается, что «плутоний практически любого изотопного состава может быть использован в ядерном оружии».

В некоторых европейских странах апологеты плутония продолжают утверждать, что реакторный плутоний практически не может быть использован в ядер-ном оружии и на этом основании плутониевые программы в таких странах, основанные на выделении и использовании реакторного плутония, предлагается рассматривать, исключетельно, как “мирные”. Утверждение о “мирном” характере реакторного плутония, однако, противоречит фактам, признанным международной научной общественностью. В докладе американской Национальной Академии Наук, выпущенном в 1991 году и посвященном диспозиции ядерных оружейных материалов, утверждается, что “плутоний с практически любым изотопным составом может быть использован в ядерном оружии”. Можно привести и другие научные и технические аргументы в пользу того, что реакторный плутоний является подходящим материалом для ядерного оружия.

МОКС-топливо

Поскольку и реакторный плутоний, и плутоний более высоких сортов является смесью делящихся изотопов, он в принципе пригоден для использования в качестве реакторного топлива. Обычно плутоний используется в этом качестве в виде смеси диоксида плутония PuO 2 с диоксидом урана UO 2 . Эта смесь оксидов (PuO 2 +UO 2), называемая МОКС-топливом, обычно используется в двух типах реакторов - в реакторах на быстрых нейтронах (БН) и в легководных реакторах (ЛВР).

Реактор на БН может вырабатывать плутоний в результате захвата нейтронов ядрами 238 U, находящегося в активной зоне реактора и в окружающем ее бланкете, в то время как плутоний (МОКС-топливо с 20-30% плутония) "горит" в активной зоне. Такой реактор называют размножителем или бридером, поскольку он вырабатывает больше плутония, чем потребляет. Смысл бридера в том, что он повышает эффективность использования ресурсов урана в целых 60 раз, и он позволяет преобразовать ранее остававшийся без применения 238 U в плутоний и одновременно вырабатывать полезную мощность. Из-за этих заманчивых перспектив реактор на БН стал с самого начала развития атомной промышленности ее "голубой мечтой", почти «вечным двигателем».

Но, увы - реальность оказалась больше похожа на кошмар, чем на прекрасный сон. Чтобы размножение было возможным, реакция деления в реакторе на БН поддерживается быстрыми (высокоэнергетическими) нейтронами, в отличие от ЛВР, которые работают на тепловых нейтронах. Поскольку нет возможности использовать замедляющий охладитель, приходится охлаждать активную зону реактора на БН расплавом щелочного металла, который имеет высокую химическую активность и реагирует со взрывом с воздухом и водой.

Отметим далее, что размножение плутония происходит не так быстро, как хотелось бы: время удвоения, то есть время, за которое один бридер создает достаточно плутония для загрузки другого такого же реактора (40 лет), значительно превышает время жизни первого реактора (не более 30 лет). Это указывает на другую ключевую проблему бридера: в конечном итоге для его эксплуатации должна быть создана система, включающая множество этапов, в том числе выделение плутония, загрузка топлива в реакторы, переработка отработавшего топлива и бланкета.

Эти и другие технические трудности бридеров стали причиной неэкономичности их использования, и оба эти недостатка - технические сложности и высокие стоимостные показатели - привели к тому, что США и все западноевропейские страны свернули свои бридерные программы.

Применение МОКС в качестве ядерного топлива: проблемы безопасности

С окончанием периода «холодной войны» угроза начала мировой войны с применением ядерного оружия уменьшилась почти до нуля. Ее место заняла опасность распространения ядерного оружия и применения его ранее не обладавшими им государствами или группами, что может произойти в случае, если в их руки попадет высокообогащенный уран или плутоний.

В настоящее время основная угроза безопасности в связи с ядерным оружием возникает из-за распространения его на страны, ранее им не обладавшие. Пока лишь семь государств обладают ядерным оружием. Это Китай, Франция, Россия, США, Великобритания, Индия и Пакистан.

На данный момент США располагают 9500 ядерных боеголовок, Россия - примерно 10500. Если разрабатываемые в настоящее время соглашения о сокращении вооружений вступят в силу, Россия и США уменьшат свои ядерные арсеналы до примерно 5000 с каждой стороны к 2003 году. Но даже после столь значительного сокращения эти две страны будут обладать весьма внушительными запасами ядерного оружия.

Великобритания располагает 400 ядерных боеголовок; Франция примерно 500; Китай, вероятно, около 400; Индия около 40; Пакистан примерно 7. Можно также предполагать, что Иран, Израиль и Северная Корея стремятся к созданию ядерного оружия.

Тем не менее, маловероятно, что какой-либо стране удастся войти в клуб ядерный держав в течение ближайших 10-15 лет. В течение этого периода произойдет широкое распространение атомных технологий, ориентированных на мирное применение (но которые можно использовать для развития военных программ). Одновременно будет происходить распространение технологии создания баллистических ракет. Опасное сочетание! Когда это произойдет (а можно опасаться, что это случится примерно через 10-15 лет), распространение ядерного оружия может пойти быстрыми темпами.

Сейчас значительное внимание уделяется деятельности ядерных держав по модернизации их ядерных вооружений («вертикальная гонка вооружений»). Однако не следует недооценивать опасности, которые таит в себе попадание ядерного оружия в распоряжение государств, ранее его не имевших («горизонтальная гонка вооружений»), поскольку это создает угрозу применения ядерного оружия в будущих локальных конфликтах.

Обретение какой-либо державой статуса ядерной будет дестабилизировать обстановку в соответствующем регионе. Более того, одна лишь возможность такого обретения наносит ущерб безопасности, заставляя страны-соседи напрягать силы, чтобы не отстать от лидера. Например, если Япония начнет работать над созданием ядерного оружия, Северная и Южная Кореи будут склонны сделать то же, а Китай, вероятно, займется наращиванием ядерных арсеналов.

Кажется маловероятным, что правительства будут принимать политические решения о создании ядерного оружия в ближайшее время, зато риск попадания ядерного оружия в руки террористов все возрастает. Эта опасность уже стала более актуальной, чем угроза мировой ядерной войны, по крайней мере, в ближайшей и среднесрочной перспективе.

Террористы неизменно стремятся к нанесению возможно большего ущерба. От ставших привычными попыток взрыва самолетов они переходят к более серьезным действиям, таким как атака с использованием нервно-паралитического газа в Токио. Этот пример показывает, что лидеры террористических группировок не останавливаются перед применением современного оружия массового уничтожения - в данном случае химического. Ядерное оружие может стать следующим в этой цепи.

Использование МОКС в качестве топлива для ядерных реакторов с последующим выделением плутония из отработанных топливных элементов резко увеличивает опасность попадания делящихся материалов, пригодных для изготовления ядерного оружия, в руки агрессивно настроенных государств и террористов. В простейшей атомной бомбе вся энергия взрыва возникает за счет реакции деления ядер.

Ниже описано устройство плутониевой атомной бомбы имплозионного типа. Те, кому удастся ее изготовить, могут быть уверены в том, что она сработает - им не потребуется проводить испытаний, так что изготовление и последующее размещение взрывного устройства можно будет осуществить в тайне.

Описание плутония

Плутоний (Plutonium) представляет собой тяжелый химический элемент серебристого цвета, радиоактивный металл с атомным числом 94, который в периодической обозначается символом Pu.

Данный электроотрицательный активный химический элемент относится к группе актиноидов с атомной массой 244,0642, и, как и нептуний, который получил свое название в честь одноименной планеты, своим названием этот химический обязан планете Плутон, поскольку предшественниками радиоактивного элемента в периодической таблице химических элементов Менделеева является и нептуний, которые также были названы в честь далеких космических планет нашей Галактики.

Происхождение плутония

Элемент плутоний впервые был открыт в 1940 году в Калифорнийском Университете группой ученых-радиологов и научных исследователей Г. Сиборгом, Э. Макмилланом, Кеннеди, А. Уолхом при бомбардировании урановой мишени из циклотрона дейтронами — ядрами тяжелого водорода.

В декабре того же года учеными был открыт изотоп плутония – Pu-238, период полураспада которого составляет более 90 лет, при этом было установлено, что под воздействием сложнейших ядерных химических реакций изначально получается изотоп нептуний-238, после чего уже происходит образование изотопа плутония-238 .

В начале 1941 года ученые открыли плутоний 239 с периодом распада в 25 000 лет. Изотопы плутония могут иметь различное содержание нейтронов в ядре.

Чистое соединение элемента смогли получить только в конце 1942. Каждый раз, когда ученые-радиологи открывали новый изотоп, они всегда измеряли время периодов полураспада изотопов.

В настоящий момент изотопы плутония, которых всего насчитывается 15, отличаются по времени продолжительности периода полураспада . Именно с этим элементом связаны большие надежды, перспективы, но и в тот же момент, серьезные опасения человечества.

Плутоний имеет значительно большую активность, чем, к примеру, уран и принадлежит к самым дорогостоящим технически важным и значимым веществам химической природы.

К примеру, стоимость грамма плутония в несколько раз больше одного грама , , или других не менее ценных металлов.

Производство, добыча плутония считается затратной, а стоимость одного грамма металла в наше время уверенно держится на отметке в 4000 американских долларов.

Как получают плутоний? Производство плутония

Производство химического элемента происходит в атомных реакторах, внутри которых уран расщепляется под воздействием сложных химическо-технологических взаимосвязанных процессов.

Уран и плутоний являются главными, основными компонентами при производстве атомного (ядерного) горючего.

При необходимости получения большого количества радиоактивного элемента применяют метод облучения трансурановых элементов, которые можно получить из отработанного атомного топлива и облучения урана. Протекание сложных химических реакций позволяет отделить металл от урана.

Чтобы получить изотопы, а именно плутоний-238 и оружейный плутоний-239, которые представляют собой промежуточные продукты распада, используют облучение нептуния-237 нейтронами.

Ничтожно малую часть плутония-244, который является самым «долгоживущим» вариантом изотопа, по причине его длительного периода полураспада, обнаружили при исследованиях в цериевой руде, которая, скорее всего, сохранилась с момента формирования нашей Планеты Земля. В естественном виде в природе данный радиоактивный элемент не встречается.

Основные физические свойства и характеристики плутония

Плутоний — довольно тяжелый радиоактивный химический элемент серебристого цвета, который блестит только в очищенном виде. Атомная масса металла плутоний равна 244 а. е. м.

По причине своей высокой радиоактивности данный элемент теплый на ощупь, может разогреться до температуры, которая превышает температурный показатель при кипении воды.

Плутоний, под воздействием атомов кислорода быстро темнеет и покрывается радужной тонкой пленочкой изначально светло-желтого, а затем насыщенного — или бурого оттенка.

При сильном окислении происходит образование на поверхности элемента — порошка PuO2. Данный вид химического металла подвержен сильным процессам окисления и воздействия коррозии даже при незначительном уровне влажности.

Чтобы предотвратить коррозирование и оксидировании поверхности металла, необходима сушильная . Фото плутония можно посмотреть ниже.

Плутоний относится к четырехвалентным химическим металлам, хорошо и быстро растворяется в йодистоводородных веществах, кислых средах, к примеру, в , хлорной, .

Соли металла быстро нейтрализуются в средах с нейтральной реакцией, щелочных растворах, при этом образовывая нерастворимый гидрооксид плутония.

Температура, при которой происходит плавление плутония равна 641 градусам Цельсия, температура кипения – 3230 градусов.

Под воздействием высоких температурных режимов происходят неестественные изменения плотности металла. В виде плутоний обладает различными фазами, имеет шесть кристаллических структур.

При переходе между фазами происходят значительные изменения объемах элемента. Наиболее плотную форму элемент приобретает в шестой альфа-фазе (последняя стадия перехода), при этом тяжелее металла в этом состоянии бывает только , , нептуний, радий.

При расплавлении происходит сильное сжатие элемента, поэтому металл может держаться на поверхности воды и других неагрессивных жидких сред.

Несмотря на то, что данный радиоактивный элемент принадлежит к группе химических металлов, элемент довольно летуч, и при нахождении в закрытом пространстве за непродолжительный период времени увеличивается и возрастает в несколько раз его концентрация в воздухе.

К основным физическим свойствам металла можно отнести: невысокую степень, уровень теплопроводности из всех существующих и известных химических элементов, низкий уровень электропроводности, в жидком состоянии плутоний относится к одним из наиболее вязких металлов.

Стоит отметить, что любые соединения плутония относятся к токсичным, ядовитым и представляют серьезную опасность облучения для человеческого организма, которое происходит по причине активного альфа-излучения, поэтому все работы нужно выполнять предельно внимательно и только в специальных костюмах с химической защитой.

Больше о свойствах, теориях происхождения уникального металла можно прочитать в книге Обручева «Плутония ». Автор В.А. Обручев приглашает читателей окунуться в удивительный и уникальный мир фантастической страны Плутония, которая расположена в глубине недр Земли.

Применение плутония

Промышленный химический элемент принято классифицировать на оружейный и реакторный («энергетический») плутоний.

Так, для производства ядерного вооружения из всех существующих изотопов допустимо применять только плутоний 239, в котором не должно быть более 4.5% плутония 240, так как он подвержен самопроизвольному делению, что значительно затрудняет изготовление боевых снарядов.

Плутоний-238 находит применение для функционирования малогабаритных радиоизотопных источников электрической энергии, к примеру, в качестве источника энергии для космической техники.

Несколько десятилетий тому назад плутоний применяли в медицине в кардиостимуляторах (приборы для поддержания сердечного ритма).

Первая атомная бомба, созданная в мире, имела плутониевый заряд. Ядерный плутоний (Pu 239) востребован как ядерное топливо для обеспечения функционирования энергетических реакторов. Также этот изотоп служит источником для получения в реакторах трансплутониевых элементов.

Если провести сравнение ядерного плутония с чистым металлом, изотоп обладает более высокими металлическими параметрами, не имеет фаз перехода, поэтому его широко используют в процессе получения элементов топлива.

Оксиды изотопа Плутония 242 также востребованы как источник питания для космических летальных агрегатов, техники, в ТВЭЛах.

Оружейный плутоний – это элемент, который представлен в виде компактного металла, в котором содержится не меньше 93% изотопа Pu239.

Данный вид радиоактивного металла применяют про производстве различных видов ядерного оружения.

Получают оружейный плутоний в специализированных промышленных атомных реакторах, которые функционируют на природном или на низкообогащенном уране, в результате захвата им нейтронов.

Химия

Плутоний Pu - элемент № 94 связаны очень большие надежды и очень большие опасения человечества. В наши дни это один из самых важных, стратегически важных, элементов. Это самый дорогой из технически важных металлов - он намного дороже серебра, золота и платины. Он поистине драгоценен.


Предыстория и история

Вначале были протоны - галактический водород . В результате его сжатия и последовавших затем ядерных реакций образовались самые невероятные «слитки» нуклонов. Среди них, этих «слитков», были, по-видимому, и содержащие по 94 протона. Оценки теоретиков позволяют считать, что около 100 нуклонных образований, в состав которых входят 94 протона и от 107 до 206 нейтронов, настолько стабильны, что их можно считать ядрами изотопов элемента № 94.
Но все эти изотопы - гипотетические и реальные - не настолько стабильны, чтобы сохраниться до наших дней с момента образования элементов солнечной системы. Период полураспада самого долгоживущего изотопа элемента №94 - 81 млн. лет. Возраст Галактики измеряется миллиардами лет. Следовательно, у «первородного» плутония не было шансов дожить до наших дней. Если он и образовывался при великом синтезе элементов Вселенной, то те давние его атомы давно «вымерли», подобно тому как вымерли динозавры и мамонты.
В XX в. новой эры, нашей эры, этот элемент был воссоздан. Из 100 возможных изотопов плутония синтезированы 25. У 15 из них изучены ядерные свойства. Четыре нашли практическое применение. А открыли его совсем недавно. В декабре 1940 г. при облучении урана ядрами тяжелого водорода группа американских радиохимиков во главе с Гленном Т. Сиборгом обнаружила неизвестный прежде излучатель альфа-частиц с периодом полураспада 90 лет. Этим излучателем оказался изотоп элемента № 94 с массовым числом 238. В том же году, но несколькими месяцами раньше Э.М. Макмиллан и Ф. Эйбельсон получили первый элемент, более тяжелый, чем уран, - элемент № 93. Этот элемент назвали нептунием , а 94-й - плутонием. Историк определенно скажет, что названия эти берут начало в римской мифологии, но в сущности происхождение этих названий скорее не мифологическое, а астрономическое.
Элементы № 92 и 93 названы в честь далеких планет солнечной системы - Урана и Нептуна, но и Нептун в солнечной системе - не последний, еще дальше пролегает орбита Плутона - планеты, о которой до сих пор почти ничего не известно... Подобное же построение наблюдаем и на «левом фланге» менделеевской таблицы: uranium - neptunium - plutonium, однако о плутонии человечество знает намного больше, чем о Плутоне. Кстати, Плутон астрономы открыли всего за десять лет до синтеза плутония - почти такой же отрезок времени разделял открытия Урана - планеты и урана - элемента.


Загадки для шифровальщиков

Первый изотоп элемента № 94 - плутоний-238 в наши дни нашел практическое применение. Но в начале 40-х годов об этом и не думали. Получать плутоний-238 в количествах, представляющих практический интерес, можно, только опираясь на мощную ядерную промышленность. В то время она лишь зарождалась. Но уже было ясно, что, освободив энергию, заключенную в ядрах тяжелых радиоактивных элементов, можно получить оружие невиданной прежде силы. Появился Манхэттенский проект, не имевший ничего, кроме названия, общего с известным районом Нью-Йорка. Это было общее название всех работ, связанных с созданием в США первых атомных бомб. Руководителем Манхэттенского проекта был назначен не ученый, а военный - генерал Гровс, «ласково» величавший своих высокообразованных подопечных «битыми горшками».
Руководителей «проекта» плутоний-238 не интересовал. Его ядра, как, впрочем, ядра всех изотопов плутония с четными массовыми числами, нейтронами низких энергий не делятся, поэтому он не мог служить ядерной взрывчаткой. Тем не менее первые не очень внятные сообщения об элементах № 93 и 94 попали в печать лишь весной 1942 г.
Чем это объяснить? Физики понимали: синтез изотопов плутония с нечетными массовыми числами - дело времени, и недалекого. От нечетных изотопов ждали, что, подобно урану-235, они смогут поддерживать цепную ядерную реакцию. В них, еще не полученных, кое-кому виделась потенциальная ядерная взрывчатка. И эти надежды плутоний , к сожалению, оправдывал.
В шифровках того времени элемент № 94 именовался не иначе, как... медью . А когда возникла необходимость в самой меди (как конструкционном материале для каких-то деталей), то в шифровках наряду с «медью» появилась «подлинная медь».

«Древо познания добра и зла»

В 1941 г. был открыт важнейший изотоп плутония - изотоп с массовым числом 239. И почти сразу же подтвердилось предсказание теоретиков: ядра плутония-239 делились тепловыми нейтронами. Более того, в процессе их деления рождалось не меньшее число нейтронов, чем при делении урана-235. Тотчас же были намечены пути получения этого изотопа в больших количествах...
Прошли годы. Теперь уже ни для кого не секрет, что ядерные бомбы, хранящиеся в арсеналах, начинены плутонием-239 и что их, этих бомб, достаточно, чтобы нанести непоправимый ущерб всему живому на Земле.
Распространено мнение, что с открытием цепной ядерной реакции (неизбежным следствием которого стало создание ядерной бомбы) человечество явно поторопилось. Можно думать по-другому или делать вид, что думаешь по-другому, - приятнее быть оптимистом. Но и перед оптимистами неизбежно встает вопрос об ответственности ученых. Мы помним триумфальный июньский день 1954 г., день, когда дала ток первая атомная электростанция в Обнинске. Но мы не можем забыть и августовское утро 1945 г. - «утро Хиросимы», «черный день Альберта Эйнштейна»... Помним первые послевоенные годы и безудержный атомный шантаж - основу американской политики тех лет. А разве мало тревог пережило человечество в последующие годы? Причем эти тревоги многократно усиливались сознанием, что, если вспыхнет новая мировая война, ядерное оружие будет пущено в ход.
Здесь можно попробовать доказать, что открытие плутония не прибавило человечеству опасений, что, напротив, оно было только полезно.
Допустим, случилось так, что по какой-то причине или, как сказали бы в старину, по воле божьей, плутоний оказался недоступен ученым. Разве уменьшились бы тогда наши страхи и опасения? Ничуть не бывало. Ядерные бомбы делали бы из урана-235 (и в не меньшем количестве, чем из плутония), и эти бомбы «съедали» бы еще большие, чем сейчас, части бюджетов.
Зато без плутония не существовало бы перспективы мирного использования ядерной энергии и больших масштабах. Для «мирного атома» просто не хватило бы урана-235. Зло, нанесенное человечеству открытием ядерной энергии, не уравновешивалось бы, пусть даже частично, достижениями «доброго атома».

Как измерить, с чем сравнить

Когда ядро плутония-239 делится нейтронами на два осколка примерно равной массы, выделяется около 200 Мэв энергии. Это в 50 млн. раз больше энергии, освобождающейся в самой известной экзотермической реакции С + O 2 = СO 2 . «Сгорая» в ядерном реакторе, грамм плутония дает 2 107 ккал. Чтобы не нарушать традиции (а в популярных статьях энергию ядерного горючего принято измерять внесистемными единицами - тоннами угля, бензина, тринитротолуола и т. д.), заметим и мы: это энергия, заключенная в 4 т угля. А в обычный наперсток помещается количество плутония, энергетически эквивалентное сорока вагонам хороших березовых дров.
Такая же энергия выделяется и при делении нейтронами ядер урана-235. Но основную массу природного урана (99,3%!) составляет изотоп 238 U, который можно использовать, только превратив уран в плутоний...

Энергия камней

Оценим энергетические ресурсы, заключенные в природных запасах урана.
Уран - рассеянный элемент, и практически он есть всюду. Каждому, кто побывал, к примеру, в Карелии, наверняка запомнились гранитные валуны и прибрежные скалы. Но мало кто знает, что в тонне гранита до 25 г урана. Граниты составляют почти 20% веса земной коры. Если считать только уран-235, то в тонне гранита заключено 3,5-105 ккал энергии. Это очень много, но...
На переработку гранита и извлечение из него урана нужно затратить еще большее количество энергии - порядка 106-107 ккал/т. Вот если бы удалось в качестве источника энергии использовать не тол ко уран-235, а и уран-238, тогда гранит можно было бы рассматривать хотя бы как потенциальное энергетическое сырье. Тогда энергия, полученная из тонны камня, составила бы уже от 8-107 до 5-108 ккал. Это равноценно 16-100 т угля. И в этом случае гранит мог бы дать людям почти в миллион раз больше энергии, чем все запасы химического топлива на Земле.
Но ядра урана-238 нейтронами не делятся. Для атомной энергетики этот изотоп бесполезен. Точнее, был бы бесполезен, если бы его не удалось превратить в плутоний-239. И что особенно важно: на это ядерное превращение практически не нужно тратить энергию - напротив, в этом процессе энергия производится!
Попробуем разобраться, как это происходит, но вначале несколько слов о природном плутонии.

В 400 тысяч раз меньше, чем радия

Уже говорилось, что изотопы плутония не сохранились со времени синтеза элементов при образовании нашей планеты. Но это не означает, что плутония в Земле нет.
Он все время образуется в урановых рудах. Захватывая нейтроны космического излучения и нейтроны, образующиеся при самопроизвольном (спонтанном) делении ядер урана-238, некоторые - очень немногие - атомы этого изотопа превращаются в атомы урана-239. Эти ядра очень нестабильны, они испускают электроны и тем самым повышают свой заряд. Образуется нептуний - первый трансурановый элемент. Нептуний-239 тоже весьма неустойчив, и его ядра испускают электроны. Всего за 56 часов половина нептуния-239 превращается в плутоний-239, период полураспада которого уже достаточно велик - 24 тыс. лет.
Почему не добывают плутоний из урановых руд ? Мала, слишком мала концентрация. «В грамм добыча - в год труды» - это о радии , а плутония в рудах содержится в 400 тыс. раз меньше, чем радия. Поэтому не только добыть - даже обнаружить «земной» плутоний необыкновенно трудно. Сделать это удалось только после того, как были изучены физические и химические свойства плутония, полученного в атомных реакторах.
Накапливают плутоний в ядерных реакторах. В мощных потоках нейтронов происходит та же реакция, что и в урановых рудах, но скорость образования и накопления плутония в реакторе намного выше - в миллиард миллиардов раз. Для реакции превращения балластного урана-238 в энергетический плутоний-239 создаются оптимальные (в пределах допустимого) условия.
Если реактор работает на тепловых нейтронах (напомним, что их скорость - порядка 2000 м в секунду, а энергия - доли электронвольта), то из естественной смеси изотопов урана получают количество плутония, немногим меньшее, чем количество «выгоревшего» урана-235. Немногим, но меньшее, плюс неизбежные потери плутония при химическом выделении его из облученного урана. К тому же цепная ядерная реакция подцеживается в природной смеси изотопов урана только до тех пор, пока не израсходована незначительная доля урана-235. Отсюда закономерен вывод: «тепловой» реактор на естественном уране - основной тип ныне действующих реакторов - не может обеспечить расширенного воспроизводства ядерного горючего. Но что же тогда перспективно? Для ответа на этот вопрос сравним ход цепной ядерной реакции в уране-235 и плутонии-239 и введем в наши рассуждения еще одно физическое понятие.
Важнейшая характеристика любого ядерного горючего - среднее число нейтронов, испускаемых после того, как ядро захватило один нейтрон. Физики называют его эта-числом и обозначают греческой буквой ц. В «тепловых» реакторах на уране наблюдается такая закономерность: каждый нейтрон порождает в среднем 2,08 нейтрона (η=2,08). Помещенный в такой реактор плутоний под действием тепловых нейтронов дает η=2,03. Но есть еще реакторы, работающие на быстрых нейтронах. Естественную смесь изотопов урана в такой реактор загружать бесполезно: цепная реакция не пойдет. Но если обогатить «сырье» ураном-235, она сможет развиваться и в «быстром» реакторе. При этом ц будет равно уже 2,23. А плутоний, помещенный под обстрел быстрыми нейтронами, даст η равное 2,70. В наше распоряжение поступит «лишних полнейтрона». И это совсем не мало.


Проследим, на что тратятся полученные нейтроны. В любом реакторе один нейтрон нужен для поддержания цепной ядерной реакции. 0,1 нейтрона поглощается конструкционными материалами установки. «Избыток» идет на накопление плутония-239. В одном случае «избыток» равен 1,13, в другом - 1,60. После «сгорания» килограмма плутония в «быстром» реакторе выделяется колоссальная энергия и накапливается 1,6 кг плутония. А уран и в «быстром» реакторе даст туже энергию и 1,1 кг нового ядерного горючего. И в том и в другом случае налицо расширенное воспроизводство. Но нельзя забывать об экономике.
В силу ряда технических причин цикл воспроизводства плутония занимает несколько лет. Допустим, что пять лет. Значит, в год количество плутония увеличится только на 2%, если η=2,23, и на 12%, если η=2,7! Ядерное горючее - капитал, а всякий капитал должен давать, скажем, 5% годовых. В первом случае налицо большие убытки, а во втором - большая прибыль. Этот примитивный пример иллюстрирует «вес» каждой десятой числа в ядерной энергетике.
Важно и другое. Ядерная энергетика должна поспевать за ростом потребности в энергии. Расчеты показывают: его условие выполнимо в будущем только тогда, когда η приближается к трем. Если же развитие ядерных энергетических источников будет отставать от потребностей общества в энергии, то останется два пути: либо «затормозить прогресс», либо брать энергию из каких-то других источников. Они известны: термоядерный синтез, энергия аннигиляции вещества и антивещества, но пока еще технически недоступны. И не известно, когда они будут реальными источниками энергии для человечества. А энергия тяжелых ядер уже давно стала для нас реальностью, и сегодня у плутония как главного «поставщика» энергии атома нет серьезных конкурентов, кроме, может быть, урана-233.


Сумма многих технологий

Когда в результате ядерных реакций в уране накопится необходимое количество плутония, его необходимо отделить не только от самого урана, но и от осколков деления - как урана, так и плутония, выгоревших в цепной ядерной реакции. Кроме того, в урано-плутониевой массе есть и некоторое количество нептуния. Сложнее всего отделить плутоний от нептуния и редкоземельных элементов (лантаноидов). Плутонию как химическому элементу в какой-то мере не повезло. С точки зрения химика, главный элемент ядерной энергетики - всего лишь один из четырнадцати актиноидов. Подобно редкоземельным элементам, все элементы актиниевого ряда очень близки между собой по химическим свойствам, строение внешних электронных оболочек атомов всех элементов от актиния до 103-го одинаково. Еще неприятнее, что химические свойства актиноидов подобны свойствам редкоземельных элементов, а среди осколков деления урана и плутония лантаноидов хоть отбавляй. Но зато 94-й элемент может находиться в пяти валентных состояниях, и это «подслащивает пилюлю» - помогает отделить плутоний и от урана, и от осколков деления.
Валентность плутония меняется от трех до семи. Химически наиболее стабильны (а следовательно, наиболее распространены и наиболее изучены) соединения четырехвалентного плутония.
Разделение близких по химическим свойствам актиноидов - урана, нептуния и плутония - может быть основано на разнице в свойствах их четырех- и шестивалентных соединений.


Нет нужды подробно описывать все стадии химического разделения плутония и урана. Обычно разделение их начинают с растворения урановых брусков в азотной кислоте, после чего содержащиеся в растворе уран, нептуний, плутоний и осколочные элементы «разлучают», применяя для этого уже традиционные радиохимические методы - осаждение, экстракцию, ионный обмен и другие. Конечные плутонийсодержащие продукты этой многостадийной технологии - его двуокись PuO 2 или фториды - PuF 3 или PuF 4 . Их восстанавливают до металла парами бария , кальция или лития . Однако полученный в этих процессах плутоний не годится на роль конструкционного материала - тепловыделяющих элементов энергетических ядерных реакторов из него не сделать, заряда атомной бомбы не отлить. Почему? Температура плавления плутония - всего 640°С - вполне достижима.
При каких бы «ультращадящих» режимах ни отливали детали из чистого плутония, в отливках при затвердевании всегда появятся трещины. При 640°С твердеющий плутоний образует кубическую кристаллическую решетку. По мере уменьшения температуры плотность металла постепенно растет. Но вот температура достигла 480°С, и тут неожиданно плотность плутония резко падает. До причин этой аномалии докопались довольно быстро: при этой температуре атомы плутония перестраиваются в кристаллической решетке. Она становится тетрагональной и очень «рыхлой». Такой плутоний может плавать в собственном расплаве, как лед на воде.
Температура продолжает падать, вот она достигла 451°С, и атомы снова образовали кубическую решетку, но расположились на большем, чем в первом случае, расстоянии друг от друга. При дальнейшем охлаждении решетка становится сначала орторомбической, затем моноклинной. Всего плутоний образует шесть различных кристаллических форм! Две из них отличаются замечательным свойством - отрицательным коэффициентом температурного расширения: с ростом температуры металл не расширяется, а сжимается.
Когда температура достигает 122°С и атомы плутония в шестой раз перестраивают свои ряды, плотность меняется особенно сильно - от 17,77 до 19,82 г/см 3 . Больше, чем на 10%!
Соответственно уменьшается объем слитка. Если против напряжений, возникавших на других переходах, металл еще мог устоять, то в этот момент разрушение неизбежно.
Как же тогда изготовить детали из этого удивительного металла? Металлурги легируют плутоний (добавляют в него незначительные количества нужных элементов) и получают отливки без единой трещины. Из них и делают плутониевые заряды ядерных бомб. Вес заряда (он определяется прежде всего критической массой изотопа) 5-6 кг. Он без труда поместился бы в кубике с размером ребра 10 см.

Тяжелые изотопы плутония

В плутонии-239 в незначительном количестве содержатся и высшие изотопы этого элемента - с массовыми числами 240 и 241. Изотоп 240 Pu практически бесполезен - это балласт в плутонии. Из 241-го получают америций - элемент № 95. В чистом виде, без примеси других изотопов, плутоний-240 и плутоний-241 можно получить при электромагнитном разделении плутония, накопленного в реакторе. Перед этим плутоний дополнительно облучают нейтронными потоками со строго определенными характеристиками. Конечно, все это очень сложно, тем более что плутоний не только радиоактивен, но и весьма токсичен. Работа с ним требует исключительной осторожности.
Один из самых интересных изотопов плутония - 242 Pu можно получить, облучая длительное время 239 Pu в потоках нейтронов. 242 Pu очень редко захватывает нейтроны и потому «выгорает» в реакторе медленнее остальных изотопов; он сохраняется и после того, как остальные изотопы плутония почти полностью перешли в осколки или превратились в плутоний-242.
Плутоний-242 важен как «сырье» для сравнительно быстрого накопления высших трансурановых элементов в ядерных реакторах. Если в обычном реакторе облучать плутоний-239, то на накопление из граммов плутония микрограммовых количеств, к примеру, калифорния-252 потребуется около 20 лет.
Можно сократить время накопления высших изотопов, увеличив интенсивность потока нейтронов в реакторе. Так и делают, но тогда нельзя облучать большое количество плутония-239. Ведь этот изотоп делится нейтронами, и в интенсивных потоках выделяется слишком много энергии. Возникают дополнительные сложности с охлаждением реактора. Чтобы избежать этих сложностей, пришлось бы уменьшить количество облучаемого плутония. Следовательно, выход калифорния стал бы снова мизерным. Замкнутый круг!
Плутоний-242 тепловыми нейтронами не делится, его и в больших количествах можно облучать в интенсивных нейтронных потоках... Поэтому в реакторах из этого изотопа «делают» и накапливают в весовых количествах все элементы от америция до фермия .
Всякий раз, когда ученым удавалось получить новый изотоп плутония, измеряли период полураспада его ядер. Периоды полураспада изотопов тяжелых радиоактивных ядер с четными массовыми числами меняются закономерно. (Этого нельзя сказать о нечетных изотопах.)
С увеличением массы растет и «время жизни» изотопа. Несколько лет назад высшей точкой этого графика был плутоний-242. А дальше как пойдет эта кривая - с дальнейшим ростом массового числа? В точку 1, которая соответствует времени жизни 30 млн. лет, или в точку 2, которая отвечает уже 300 млн. лет? Ответ на этот вопрос был очень важен для наук о Земле. В первом случае, если бы 5 млрд, лет назад Земля целиком состояла из 244 Pu, сейчас во всей массе Земли остался бы только один атом плутония-244. Если же верно второе предположение, то плутоний-244 может быть в Земле в таких концентрациях, которые уже можно было бы обнаружить. Если бы посчастливилось найти в Земле этот изотоп, наука получила бы ценнейшую информацию о процессах, происходивших при формировании нашей планеты.

Периоды полураспада некоторых изотопов плутония

Несколько лет назад перед учеными встал вопрос: стоит ли пытаться найти тяжелый плутоний в Земле? Для ответа на него нужно было прежде всего определить период полураспада плутония-244. Теоретики не могли рассчитать эту величину с нужной точностью. Вся надежда была только на эксперимент.
Плутоний-244 накопили в ядерном реакторе. Облучали элемент № 95 - америций (изотоп 243 Am). Захватив нейтрон, этот изотоп переходил в америций-244; америций- 244 в одном из 10 тыс. случаев переходил в плутоний-244.
Из смеси америция с кюрием выделили препарат плутония-244. Образец весил всего несколько миллионных долей грамма. Но их хватило для того чтобы определить период полураспада этого интереснейшего изотопа. Он оказался равным 75 млн. лет. Позже другие исследователи уточнили период полураспада плутония-244, но ненамного - 81 млн. лет. В 1971 г. следы этого изотопа нашли в редкоземельном минерале бастнезите .
Много попыток предпринимали ученые, чтобы найти изотоп трансуранового элемента, живущий дольше, чем 244 Pu. Но все попытки остались тщетными. Одно время возлагали надежды на кюрий-247, но после того, как этот изотоп был накоплен в реакторе, выяснилось, что его период полураспада всего 16 млн. лет. Побить рекорд плутония-244 не удалось, - это самый долгоживущий из всех изотопов трансурановых элементов.
Еще более тяжелые изотопы плутония подвержены бета-распаду, и их время жизни лежит в интервале от нескольких дней до нескольких десятых секунды. Мы знаем наверное, что в термоядерных взрывах образуются все изотопы плутония, вплоть до 257 Pu. Но их время жизни - десятые доли секунды, и изучить многие короткоживущие изотопы плутония пока не удалось.


Возможности первого изотопа плутония

И напоследок - о плутонии-238 - самом первом из «рукотворных» изотопов плутония, изотопе, который вначале казался бесперспективным. В действительности это очень интересный изотоп. Он подвержен альфа-распаду, т. е. его ядра самопроизвольно испускают альфа-частицы - ядра гелия. Альфа-частицы, порожденные ядрами плутония-238, несут большую энергию; рассеявшись в веществе, эта энергия превращается в тепло. Как велика эта энергия? Шесть миллионов электронвольт освобождается при распаде одного атомного ядра плутония-238. В химической реакции та же энергия выделяется при окислении нескольких миллионов атомов. В источнике электричества, содержащем один килограмм плутония-238, развивается тепловая мощность 560 ватт. Максимальная мощность такого же по массе химического источника тока - 5 ватт.
Существует немало излучателей с подобными энергетическими характеристиками, но одна особенность плутония-238 делает этот изотоп незаменимым. Обычно альфа- распад сопровождается сильным гамма-излучением, проникающим через большие толщи вещества. 238 Pu - исключение. Энергия гамма-квантов, сопровождающих распад его ядер, невелика, защититься от нее несложно: излучение поглощается тонкостенным контейнером. Мала и вероятность самопроизвольного деления ядер этого изотопа. Поэтому он нашел применение не только в источниках тока, но и в медицине. Батарейки с плутонием-238 служат источником энергии в специальных стимуляторах сердечной деятельности.
Но 238 Pu не самый легкий из известных изотопов элемента № 94, получены изотопы плутония с массовыми числами от 232 до 237. Период полураспада самого легкого изотопа - 36 минут.

Плутоний - большая тема. Здесь рассказано главное из самого главного. Ведь уже стала стандартной фраза, что химия плутония изучена гораздо лучше, чем химия таких «старых» элементов, как железо . О ядерных свойствах плутония написаны целые книги. Металлургия плутония - еще один удивительный раздел человеческих знаний... Поэтому не нужно думать, что, прочитав этот рассказ, вы по-настоящему узнали плутоний - важнейший металл XX в.

  • КАК ВОЗЯТ ПЛУТОНИЙ. Радиоактивный и токсичный плутоний требует особой осторожности при перевозке. Сконструирован контейнер специально для его транспортировки - контейнер, который не разрушается даже при авиационных катастрофах. Сделан он довольно просто: это толстостенный сосуд из нержавеющей стали, окруженный оболочкой из красного дерева. Очевидно, плутоний того стоит, но прпредставьте, какой толщины должны быть стенки, если известно, что контейнер для перевозки всего двух килограммов плутония весит 225 кг!
  • ЯД И ПРОТИВОЯДИЕ. 20 октября 1977 г. агентство «Франс Пресс» сообщило: найдено химическое соединение, способное выводить из организма человека плутоний. Через несколько лет об этом соединении стало известно довольно многое. Это комплексное соединение - линейный катехинамид карбоксилазы, вещество класса хелатов (от греческого - «хела» - клешня). В эту химическую клешню и захватывается атом плутония, свободный или связанный. У лабораторных мышей с помощью этого вещества из организма выводили до 70% поглощенного плутония. Полагают, что в дальнейшем это соединение поможет извлекать плутоний и из отходов производства, и из ядерного горючего.

Плутоний (plutonium) Pu, - искусственно полученный радиоактивный химический элемент, Z=94, атомная масса 244,0642; относится к актинидам. В настоящее время известно 19 изотопов плутония. Самый лёгкий из них 228 Ри (71/2=1,1 с), самый тяжёлый ^Pu (7i/ 2 =2,27 дн), 8 ядерных изомеров. Наиболее устойчив изотоп 2А- 236, 238, 239, 240, 242 и 244: 21013, 6,29-ю 11 ,2,33-ю 10 ,8,51109, 3,7-ю 12 ,1,48-ю 8 и 6,66-юз Бк/г, соответственно. Средняя энергия a-излучения изотопов с А= 236, 238, 239, 240, 242 и 244 равна 5,8, 5,5, 5,1, 5,2, 4,9 и 4,6 МэВ, соответственно. Лёгкие изотопы плутония (2 з 2 Ри, 2 34Pu, 235Pu, 2 з7Ри) претерпевают электронный захват. 2 4"Ри - р-излу"чатель (Ер=0,0052 МэВ). Практически самый важный - 2 з9Ри (7|/ 2 =2,44-Ю4 лет, а-распад, самопроизвольное деление (з,мо- ю %)) делится под действием медленных нейтронов и используется в ядерных реакторах в качестве горючего, и в атомных бомбах, как вещество заряда.

Плутоний-236 (7i/ 2 =2.85i лет), а-излучатель: 5,72МэВ (30,56%) и 5,77 МэВ (69,26%), дочерний нуклид 2 3 2 U, удельная активность 540 Ки/г. Вероятность спонтанного деления кг 6 . Скорость самопроизвольного деления 5,8-ю 7 делений на 1 г/час соответствуют периоду" полураспада для этого процесса 3,5-109 лет.

Может быть получен по реакциям:

Этот изотоп образуется также при распаде а-излучателя 2 4оСш (7i/ 2 =27 дн) и р-излучателя 23 6m Np (7i/ 2 =22 ч). 2 з 6 Ри распадается по следующим направлениям: а-распад, вероятность 100% и самопроизвольное деление (вероятность

Плутопий-237 (7!/ 2 =45> 2 дн), дочерний продукт 2 37Np. Может быть получен бомбардировкой природного урана ионами гелия с энергией 40 МэВ по ядерным реакциям:

Он в небольших количествах образуется и при облучении урана реакторными нейтронами. Основной типа распада - электронный захват

(99%, характеристическое рентгеновское излучение, дочерний продукт ^Np), но имеет место а-распад с образованием 2 ззи и слабое у-излучение, период полураспада 45,2 дня. 2 з7Рц находит применение в системах контроля химического выхода плутония в процессе его выделения из образцов компонентов окружающей среды, а также для исследований метаболизма плутония в человеческом организме

Плутоний-238, 7*1/2=87,74 лет, а-излучатель (энергии 5,495(76%), 5,453(24%) и 5,351(0,15%) МэВ, слабый у-излучатель (энергии от 0,044 ДО 0,149 МэВ). Активность 1 г этого нуклида ~6зз,7 ГБк (удельная активность 17 Ки/г); каждую секунду в этом же количестве вещества происходит -1200 актов спонтанного деления. Скорость самопроизвольного деления 5,1-ю 6 делений на 1 г/час соответствуют периоду полураспада для этого процесса 3,8-10 ю лет. При этом развивается очень высокая тепловая мощность: 567 Вт/кг. Г Д ел=3,8-10 ю лет. Поперечное сечение захвата тепловых нейтронов а=500 барн, сечение деления под действием тепловых нейтронов -18 барн. Он обладает очень высокой удельной а-радиоактивностью (в 283 раза сильнее ^Ри), что делает его много более серьезным источником нейтронов от реакций (а, п).

  • 2 з 8Ри образуется в результате следующих распадов:
    • (3 -распад нуклида 2 3 8 Np:

2 з 8 Ри образуется в любом ядерном реакторе, работающем на природном или малообогащённом уране, содержащем в основном изотоп 2 з 8 и. При этом происходят следующие ядерные реакции:


Он также образуется при бомбардировке урана ионами гелия с энергией 40 МэВ:

гаснад ^”ги происходит но следующим направлениям: а-распад в 2 34U (вероятность юо%, энергия распада 5,593 МэВ):

энергия испускаемых а-частиц 5,450 мэь (в 2«,9«% случаев; и 5,499 мэь (.в 70,91% случаев). Вероятность спонтанного деления 1,9-ю -7 %.

При а-распаде 2 з 8 Ри выделяется 5,5 МэВ энергии. В источнике электричества, содержащем один килограмм 2 -з 8 Ри, развивается тепловая мощность ~5бо ватт. Максимальная мощность такого же по массе химического источника тока - 5 ватт. Существует немало излучателей с подобными энергетическими характеристиками, но одна особенность 2 з»Ри делает этот изотоп незаменимым. Обычно а-распад сопровождается сильным у- излучением. 2 з 8 Ри - исключение. Энергия у-квантов, сопровождающих распад его ядер, невелика. Мала и вероятность самопроизвольного деления ядер этого изотопа. 288 Ри применяется для изготовления атомных электрических батарей и нейтронных источников, в качестве источников питания для электрокардиостимуляторов, получения тепловой энергии в космических аппаратах, в составе радиоизотопных дымовых детекторов и т.п.

Плутоний-239, 71/2=2.44-ю 4 лет, а-распад юо%, полная энергия распада 5,867 МэВ, испускает а-частицы с энергиями 5,15 (69%), 5,453 (24%) и 5,351(0,15%) и слабое у-излучение, поперечное сечение захвата тепловых нейтронов ст=271-барн. Удельная активность 2,33109 Бк/г. Скорость самопроизвольного деления 36 дел/г/час соответствуют 7”дел= 5,5-10*5 лет. 1 кг 2 39Ри эквивалентен 2,2-107 киловатт-час тепловой энергии. Взрыв 1 кг плутония равен взрыву 20000 тонн тротила. Единственный изотоп плутония, используемый в атомном оружии. 2 39Ри входит в состав семейства 2П+3- Продуктом его распада является 2 35U. Этот изотоп делится под действием тепловых нейтронов и используется в ядерных реакторах в качестве гошочего. 2 39Ри получается в ялепных пеактопах по пеакпии:

Поперечное сечение реакции -455 барн. *39Ри образуется также при

бомбардировке урана дейтронами с энергией выше 8 МэВ по ядерным реакциям:

а также при бомбардировке урана ионами гелия с энергией 40 МэВ
самопроизвольное деление, вероятность 1,36-10*7%.

Отделение плутония от урана, проводимое химическими методами, представляет относительно более простую задачу, чем разделение изотопов урана. Вследствие этого стоимость плутония в разы ниже стоимости 2 ззи. Когда ядро 2 39Ри делится нейтронами на два осколка примерно равной массы, выделяется около 200 МэВ энергии. Способен поддерживать цепную реакцию деления. Относительно короткий период полураспада 2 39Ри (по сравнению с ^и) подразумевает значительное выделение энергии при радиоактивном распаде. 2 39Рц производит 1,92 Вт/кг. Хорошо теплоизолированный блок плутония разогревается до температуры свыше 100° за два часа и вскоре до точки a-p-перехода, что представляет проблему для конструирования оружия из-за изменения объёма при фазовых переходах плутония. Удельная активность 2 39Pu 2,28-ю 12 Бк/г. 2 39Ри легко делится тепловыми нейтронами. Делящийся изотоп 239 Pu при полном распаде даёт тепловую энергию, эквивалентную 25000000 квт-час/кг. У 2 39Ри поперечное сечение деления на медленных нейтронах 748 барн, сечение радиационного захвата 315 барн. 2 39Pu имеет большие сечения рассеивания и поглощения, чем уран и большее число нейтронов при делении (3,03 нейтрона на один акт деления по сравнению с 2,47 у 2 ззи), и, соответственно, меньшую критическую массу. Чистый 2 39Pu имеет среднюю величину испускания нейтронов от спонтанного деления -30 нейтронов/с-кг (-10 делений/с).-

Плутоний-240, 71/2=6564 л, а-распад, удельная активность 8,51-109 Бк/г. Скорость самопроизвольного деления 1,6-ю 6 дел/г/час, Ti/2=i,2-io u л. 24°Ри имеет втрое меньшее эффективное сечение захвата нейтрона, чем 239 Ри и в большинстве случаев превращается в 2 4*Pu.

24ор и образуется при распаде некоторых радионуклидов:


Энергия распада 5,255 МэВ, а-частицы с энергиями 5,168 (72,8%), 5,123 (27,10%) МэВ;

Спонтанное деление, вероятность 5,7-ю -6 .

В урановом топливе содержание ^Ри увеличивается в процессе работы реактора. В отработанном топливе ядерного реактора -70% *з9Ри и 26% 2 4°Ри, что затрудняет изготовление атомного оружия, поэтому оружейный плутоний получается на специально предназначенных для этого реакторах путём переработки урана после нескольких десятков дней облучения. *4°Ри - основной изотоп, загрязняющий оружейный 2 39Ри. Уровень его содержания важен из-за интенсивности спонтанного деления - 415000 дел/с-кг, испускается юооооо нейтронов/с-кг, так как каждое деление рождает 2,26 нейтрона - в 30000 раз больше, чем у равной массы 2 39Ри. Наличие всего 1% этого изотопа производит так много нейтронов, что пушечная схема заряда утке неработоспособна - начнётся раннее инициирование взрыва и заряд будет распылён до того, как взорвётся основная масса взрывчатки. Пушечная схема возможна только при юо% содержании *39Ри, добиться чего практически не реально. Поэтому плутониевые бомбу собирают по имплозивной схеме, которая допускает использование плутония довольно сильно загрязнённого изотопом ^Ри. В оружейном плутонии содержание 2 4°Ри

Вследствие более высокой удельной активности (1/4 от 2 39Ри), тепловой выход выше, 7.1 Вт/кг, что обостряет проблему перегрева. Удельная активность ^Ри 8,4109 Бк/г. Содержание ^Ри в оружейном плутонии (0,7%), в реакторном (>19%). В топливе для тепловых реакторов присутствие 24 °Ри нежелательно, но этот изотоп служит топливом в быстрых реакторах.

Плутоний-241, Г,/2=14 л, дочерний продукт 241 Am, р- (99%, ?рмакс=0,014 МэВ), а (1%, две линии: 4,893 (75%) и 4,848 (25%) МэВ) и у-излучатель, удельная активность ^Ри 3,92-ю 12 Ки/г. Получается при сильном облучении плутония нейтронами, а также в циклотроне по реакции 2 3 8 U(a,n) 241 Pu. Этот изотоп делится нейтронами любых энергий (поперечное сечение поглощения нейтронов у ^‘Ри на 1/3 больше, чем у ^Фи, сечение деления тепловыми нейтронами около юоо барн, вероятность деления при поглощении нейтрона 73%), имеет низкий нейтронный фон и умеренную тепловую мощность и потому непосредственно не влияет на удобство применения плутония. Он распадается в 241 Am, который очень плохо делится и создаёт много тепла: ю 6 Вт/кг. ^‘Ри обладает большим сечением деления на реакторных нейтронах (поо барн), что позволяет использовать его в качестве топлива. Если оружие первоначально содержит 241 Ри, то через несколько лет его реакционная способность падает, и это следует учитывать для предотвращения уменьшения мощности заряда и увеличения самонагрева. Сам 24 ‘Ри сильно не нагревается (всего 3.4 Вт/кг) несмотря на свой очень короткий период полураспада из-за очень слабого P-излучения. При поглощении нейтрона ядром 24 *Ри, если оно не делится, то переходит в 242 Pu. 241 Ри является основным источником получения ^‘Аш.

Плутоний-242 (^/2=373300 лет),

Плутоний-243 №/2=4-956 час), р"- (энергия 0,56 МэВ) и у-излучатель (несколько линий в интервале 0,09-е-о,16 МэВ) Поперечное сечение реакции 242 Pu(n,y) 243 Pu на медленных нейтронах юо барн. Образуется при p-распаде "^зРи 24 зАш, может быть получен облучением нейтронами 2 4 2 Pu. Из-за своего короткого периода полураспада, присутствует в облучённом реакторном топливе в незначительных количествах.

Плутоний-244 (Ti/ 2 =8,o*io 7 лет), а-излучатель, Е а = 4,6 МэВ, способен к самопроизвольному делению, удельная активность 6,66-105 Бк/г, поперечное сечение захвата тепловых нейтронов 0=19 барн. Это не только самый долгоживущий изотоп плутония, но и самый долгоживущий из всех изотопов трансурановых элементов. Удельная активность 2

Ещё более тяжёлые изотопы плутония подвержены p-распаду, и их время жизни лежит в интервале от нескольких дней до нескольких десятых секунды. В термоядерных взрывах образуются все изотопы плутония, вплоть до 2 57Ри. Но их время жизни - десятые доли секунды, и изучить многие короткоживущие изотопы плутония пока не удалось.

Плутоний - очень тяжёлый серебристо-белый металл, блестящий подобно никелю, когда только что очищен. Атомная масса 244,0642 а.е.м. (г/моль), радиус атома 151 пм, энергия ионизации (первый электрон) 491,9(5,10) кДж/моль (эВ), электронная конфигурация 5f 6 7s 2 . Радиус иона: (+4е) 93, (+3е) ю8 пм, электроотрицательность (по Полингу) 1,28, Т П л=639,5°, Г К ип=3235° ,плотность плутония 19,84 (a-фаза), теплота испарения плутония 80,46 ккал/моль. Давление пара плутония значительно выше давления пара урана (при 1540 0 в 300 раз). Плутоний может быть отогнан от расплавленного урана. Известны шесть аллотропных модификаций металлического плутония. При температурах

В лабораторных условиях металлический плутоний может быть получен по реакциям восстановления галогенидов плутония литием, кальцием, барием или магнием при 1200°:

Металлический плутоний получают также при восстановлении в паровой фазе при 1300 0 трифторида плутония посредством силицида кальция по реакции

или термическим разложением галогенидов плутония в вакууме.

Плутоний имеет множество специфических свойств. Он обладает самой низкой теплопроводностью из всех металлов, самой низкой электропроводностью, за исключением марганца. В своей жидкой фазе это самый вязкий металл. При изменении температуры плутоний подвергается самым сильным и неестественным изменениям плотности.

Плутоний обладает шестью различными фазами (кристаллическими структурами) в твердой форме (табл. 3), больше чем любой другой элемент. Некоторые переходы между фазами сопровождаются разительными изменениями объёма. В двух из этих фаз - дельта и дельта прим - плутоний обладает уникальным свойством сжиматься при повышении температуры, а в остальных - имеет чрезвычайно большой температурный коэффициент расширения. При расплавлении плутоний сжимается, позволяя нерасплавленному плутонию плавать. В своей максимально плотной форме, a-фазе, плутоний шестой по плотности элемент (тяжелее его только осмий, иридий, платина, рений и нептуний). В a-фазе чистый плутоний хрупок. Известно большое число сплавов и интерметаллических соединений плутония с Al, Be, Со, Fe, Mg, Ni, Ag. Соединение PuBe, 3 является источником нейтронов с интенсивностью 6,7*107 нейтр/скг.

Рис. 5.

Вследствие своей радиоактивности, плутоний теплый на ощупь. Большой кусок плутония в термоизолированной оболочке разогревается до температуры, превышающей температуру кипения воды. Мел- коизмельчённый плутоний - пироморфен, при 300 0 самовозгорается. Взаимодействует с галогенами и галогеноводородами, образуя галогениды, с водородом - гидриды, с утлеродом - карбид, с азотом реагирует при 250 0 с образованием нитрида, при действии аммиака также образует нитриды. Восстанавливает С0 2 до СО или С, при этом образуется карбид. Взаимодействует с газообразными соединениями серы. Плутоний легко растворяется в соляной, 85%-ной фосфорной, йодистоводородной, хлорной и концентрированной хлоруксусной кислотах. Разбавленная H2SO4 растворяет плутоний медленно, а концентрированная H 2 S0 4 и HN0 3 его пассивируют и не реагируют с ним. Щелочи на металлический плутоний не действуют. Плутониевые соли легко гидролизируются при контакте с нейтральными или щелочными растворами, создавая нерастворимый гидроксид плутония. Концентрированные растворы плутония нестабильны, вследствие радиолитического разложения, ведущего к выпадению осадка.

Табл. 3. Плотности и температурный диапазон фаз плутония:

Основная валентность плутония 4+. Это электроотрицательный, химически активный элемент (на 0,2 В), гораздо в большей степени, чем уран. Он быстро тускнеет, образую радужную плёнку, вначале светло- жёлтую, со временем переходящую в тёмно-пурпурную. Если окисление довольно быстрое, на его поверхности появляется оливково-зеленый порошок оксида (Ри0 2).

Плутоний легко окисляется и быстро коррозирует даже в присутствии незначительной влажности. Он покрывается ржавчиной в атмосфере инертного газа с парами воды гораздо быстрее, чем на сухом воздухе или в чистом кислороде. При нагревании плутония в присутствии водорода, углерода, азота, кислорода, фосфора, мышьяка, фтора, кремния, теллура образует с этими элементами твердые нерастворимые соединения.

Из оксидов плутония известны Pu 2 0 3 и Ри0 2 .

Диоксид плутония Ри0 2 - оливково-зелёный порошок, чёрные блестящие кристаллы или шарики от красно-коричневого до янтарножёлтого цвета. Кристаллическая структура типа флюорита (Ри-* + формируют гранецентрированную кубическую сингонию, а О 2- -тетраэдр). Плотность 11,46, Гпл=2400°. Он образуется почти из всех солей (например, оксалата, пероксида) плутония при нагревании на воздухе или в атмосфере 0 2 , при температурах 700-1000 0 , независимо от того, в какой степени окисления находится в этих солях плутоний. Например, его можно получить кальцинацией гексагидрата оксалата Pu(IV) Pu(C 2 0 4) 2 -6H 2 0 (образуется при переработке ОЯТ):

Ри0 2 , полуденный при низких температурах, легко растворяется в концентрированной соляной и азотной кислотах. Напротив, прокаленный Ри0 2 трудно растворим и может быть переведён в раствор только в результате специальной обработки. Он нерастворим в воде и органических растворителях. Медленно взаимодействует с горячей смесью концентрированной HN0 3 с HF. Это устойчивое соединение используется в качестве весовой формы при определении плутония. Его используют также для приготовления топлива в ядерной энергетике.

Особенно реакционноспособный Ри0 2 , но содержащий небольшие количества оксалата, получают разложением Ри(С 2 0 4) 2 -6Н 2 0 при 130-^-300°.

Гидрид Р11Н3 получают из элементов при 150-5-200°.

Плутоний образует галогениды и оксигалогениды, дисилицид PuSi 2 и полуторный сульфид PuSi,33^ b5 , которые представляют интерес ввиду их туго плавкости, а также карбиды различных стехиометрий: от РиС до Ри 2 С 3 . РиС - кристаллы чёрного цвета, Г 11Л =1664 0 . Совместно с UC может использоваться как топливо атомных реакторов.

Нитрид плутония, PuN - кристаллы серого (до чёрного) цвета гранецентрирированной кубической решеткой типа NaCl (0=0,4905 нм, z=4, пространственная группа Ртзт; параметр решётки увеличивается со временем под действием собственного a-излучения); Т пл.=2589° (с разложением); плотность 14350 кг/мз. Обладает высокой теплопроводностью. При высокой температуре (~1боо°) летуч (с разложением). Получается при взаимодействии плутония с азотом при 6оо° или со смесью водорода с аммиаком (давление 4 кПа). Порошкообразный PuN плутония окисляется на воздухе при комнатной температуре, полностью превращаясь в Ри0 2 через 3 сут, плотный - окисляется медленно (0,3% за 30 сут). Он медленно гидролизуется холодной водой и быстро - при нагревании, образуя Ри0 2 ; легко растворяется в разбавленных соляной и серной кислотах с образованием соответствующих солей Pu(III); по силе действия на нитрид плутония кислоты могут быть расположены в ряд HN0 3 >HC1>H 3 P0 4 >>H 2 S04>HF. Может использоваться как реакторное топливо.

Существует несколько фторидов плутония: PuF 3 , PuF 4 , PuF6.

Тетрафторид плутония PuF 4 - вещество розового цвета или коричневые кристаллы, моноклинной сингонии. Изоморфен с тетрафторидом Zr, Hf, Th, U, Np и Се. Г пл =1037 0 , Г к,«1=1277°. Он плохо растворим в воде и органических растворителях, но легко растворяется в водных растворах в присутствии солей Ce(IV), Fe(III), А1(Ш) или ионов, образующих с ионами фтора устойчивые комплексы. Розовый осадок PuF 4 -2,5H 2 0 получают осаждением плавиковой кислотой из водных растворов солей Pu(III). Это соединения дегидратируется при нагревании до 350 м в токе HF.

PuF 4 образуется при действии фтористого водорода на диоксид плу- тония в присутствии кислорода при 550° по реакции:

PuF 4 можно также полупить обработкой PuF 3 фтором при 300 0 или нагревом солей Pu(III) или Pu(IV) и токе фтористого водорода. Из водных растворов Pu(IV) PuF 4 осаждается плавиковой кислотой в виде розового осадка состава 2PuF 4 H 2 0. PuF 4 практически полностью соосаждается с LaF 3 . При нагревании на воздухе до 400 0 PuF 4 превращается в Ри0 2 .

Гексафторид плутония, PuFe - летучие кристаллы при комнатной температуре желтовато-коричневого цвета (при низких температурах - бесцветные) ромбической структуры, Гпл=52°, Т кнп =б2° при атмосферном давлении, плотность 5060 кгм-з, теплота сублимации 12,1 ккал/моль, теплота испарения =7.4 ккал моль* 1 , теплота плавления =4,71 ккал/моль, весьма склонно к коррозии и чувствительно к авторадиолизу. PuFe - легкоки- пящая жидкость, термически значительно менее стабильная и менее летучая, чем UF6. Пары PuFe окрашены подобно N0 2 , жидкость имеет тёмнокоричневый цвет. Сильный фторирующий агент и окислитель; бурно реагирует с водой. Крайне чувствителен к влаге; с Н 2 0 при дневном свете может реагировать очень энергично со вспышкой с образованием Ри0 2 и PuF 4 . PuFe,сконденсированный при -195 0 на лёд, при нагревании медленно гидролизуется до Pu0 2 Fo. Компактный PuFe самопроизвольно разлагается вследствие а-излу"чения плутония.

UF6 получают обработкой PuF 4 или Ри0 2 фтором при 6004-700°.

Фторирование PuF 4 фтором при 7004-800° происходит очень быстро и является экзотермической реакцией. Образующийся PuF6 во избежание разложения быстро удаляют из горячей зоны - вымораживают или проводят синтез в потоке фтора, который достаточно быстро выводит продукт из реакционного объёма.

PuFa можно также получить по пеякпиям:

Существуют нитраты Pu(III), Pu(IV) и Pu(VII): Pu(N0 3) 3 , Pu(N0 3) 4 и Pu0 2 (N0 3) 2 , соответственно.

Нитрат плутония, Pu(N0 3) 4 *5H 2 0, получают медленным (в течение нескольких месяцев) испарением концентрированного азотнокислого раствора Pu(IV) при комнатной температуре. Хорошо растворим в HN0 3 и воде (азотнокислый раствор тёмно-зелёного цвета, коричневого цвета). Растворяется ацетоне, эфире и трибутилфосфате. Растворы нитрата плутония и нитратов щёлочных металлов в концентрированной азотной кислоте при упаривании выделяют двойные нитраты Ме 2 [Ри(Ы0 3)б], где Me + =Cs + , Rb + , К + , Th + , C 9 H 7 NH + , C 5 H 5 NH + , NH 4 + .

Оксалат плутония (IV), Pu(C 2 0 4) 2 -6H 2 0, - порошок песочного (иногда жёлто-зелёного) цвета. Изоморфен с U(C 2 0 4)-6H 2 0. Гексагидрат оксалата плутония плохо растворим в минеральных кислотах и хорошо в растворах оксалатов и карбонатах аммония или щёлочных металлов с образованием комплексных соединений. Осаждается щавелевой кислотой из азотнокислых (i,5*4.5M HNO.0 растворов Pu(IV):

Обезвоживается при нагревании на воздухе до ио°, выше 400 0 разлагается:

В соединениях плутоний проявляет степени окисления от +2 до +7. В водных растворах образует ионы, отвечающие степеням окисления от +3 до +7. При этом ионы всех степеней окисления, кроме Pu(VII), могут находиться в растворе одновременно в равновесии. Ионы плутония в растворе подвергаются гидролизу и легко образуют комплексные соединения. Способность образовывать комплексные соединения увеличивается в ряду Pu5 +

В растворе наиболее стабильны ионы Pu(IV). Pu(V) диспропорцио- нируют на Pu(lV) и Pu(Vl). Валентное состояние Pu(VI) характерно для сильно окисляющих водных растворов, и ему отвечает ион плутонила Ри0 2 2+ . Ионы плутония, с зарядами з + и 4 + существуют в водных растворах в отсутствие гидролиза и комплексообразования в виде сильно гидратированных катионов. Pu(V) и Pu(VI) в кислых растворах представляют собой кислородсодержащие катионы типа М0 2 + и М0 2 2+ .

Степеням окисления плутония (III, IV, V и VI) соответствуют следующие ионные состояния в кислых растворах: Pu 3+ , Pu4 + , Ри0 2 2+ и Ри0 5 3 Ввиду" близости потенциалов окисления ионов плутония друг к другу" в растворах могут одновременно существовать в равновесии ионы плутония с разными степенями окисления. Кроме того, наблюдается диспропорционирование Pu(IV) и Pu(V):


Скорость диспропорционирования растёт с увеличением концентрации плутония и температуры.

Растворы Риз + имеют сине-фиолетовую окраску. По своим свойствам Рцз + близок к РЗЭ. Нерастворимы его гидроксид, фторид, фосфат и оксалат. Pu(IV) является наиболее устойчивым состоянием плутония в водных растворах. Pu(IV) склонен к комплексообразованию с азотной, серной, соляной, уксусной и др. кислотами. Так, в концентрированной азотной кислоте Pu(IV) образует комплексы Pu(N0 3)5- и Ри(Ж) 3)б 2 ". В водных растворах Pu(IV) легко гидролизуется. Гидроксид плутония (зелёного цвета) склонен к полимеризации. Нерастворимы фторид, гидроксид, оксалат, йодат Pu(IV). Pu(IV) хорошо соосаждается с нерастворимыми гидроксидами, фторидом лантана, йодатами Zr, Th, Се, фосфатами Zr и Bi, оксалатами Th, U(IV), Bi, La. Pu(IV) образуют двойные фториды и сульфаты с Na, К, Rb, Cs и NH 4 + . Pu(получают в о,2 М растворе HN0 3 при смешении растворов Pu(III) и Pu(VI). Из солей Pu(VI) интерес представляют натрийплутонил- ацет NaPu0 2 (C 2 H 3 0 2) 3 и аммонийплутонилацетат NH 4 Pu0 2 (C 2 H 3 0 2), которые сходны по структуре с соответствующими соединениями U, Np и Ат.

Формальные окислительные потенциалы плутония (в В) в lM растворе НС10 4:


Устойчивость комплекса, образующегося с данным анионом, для ионов актинидов падает в следующем порядке: М4 + >М0 2+ >Мз + >М0 2 2+ > М0 2 + , т.е. в порядке уменьшения ионного потенциала. Способность анионов к комплексообразованию с ионами актинидов убывает для однозарядных анионов - фторид >нитрат> хлорид> перхлорат; для двухзарядных анионов карбонат>оксалат>сульфат. Большое число комплексных ионов образуется с органическими веществами.

Как Pu(IV), так и Pu(VI) хорошо экстрагируются из кислых растворов этиловым эфиром, ТБФ, диизопропилкетоном и др. Неполярными органическими растворителями хорошо экстрагируются клешневидные комплексы, например, с а-теноилтрифтор-ацетоном, р-дикетоном, купферо- ном. Экстракция комплексов Pu(IV) с а-теноилтрифторацетон (ТТА) позволяет провести очистку плутония от большинства примесей, включая актинидные и редкоземельные элементы.

Водные растворы ионов плутония в разных состояниях имеют следующие цвета: Pu(III), как Рцз + (голубой или бледно-лиловый); Pu(IV), как Рц4* (жёлто-коричневый); Pu(VI), как Ри0 2 2+ (розово-оранжевый). Pu(V), как Ри0 2 + первоначально розовый, но будучи нестабильным в растворе, этот ион диспропорционирует в Ри 4+ и Pu0 2 2+ ; Ри 4+ затем окисляется, переходя из Ри0 2 + в Pu0 2 2+ , и восстанавливается в Ри 3+ . Таким образом, водный раствор плутония со временем представляет собой смесь Рцз + и Ри0 2 2+ . Pu(VII), как Ри0 5 2 - (тёмно-синий).

Для обнаружения плутония используют радиометрический метод, основанный на измерении a-излучения плутония и его энергии. Этот метод характеризуется довольно высокой чувствительностью: позволяет обнаружить 0,0001 мкг 2 39Ри. При наличии в анализируемом образце других а-излучателей идентификация плутония может быть выполнена измерением энергии а-частиц при помощи а-спектрометров.

В ряде химических и физико-химических методов качественного определения плутония используется различие в свойствах валентных форм плутония. Ион Pu(III) в довольно концентрированных водных растворах можно обнаружить по ярко-голубой окраске, резко отличающейся от желто-коричневой окраски водных растворов, содержащих ионы Pu(IV).

Спектры светопоглощения растворов солей плутония в различных степенях окисления имеют специфические и узкие полосы поглощения, что позволяет проводить идентификацию валентных форм и обнаружение одной из них в присутствии других. Наиболее характерные максимумы светопоглощения Pu(III) лежат в области 600 и 900 ммк, Pu(IV) - 480 и 66о ммк, Pu(V) - 569 ммк и Pu(VI) 830+835 ммк.

Хотя плутоний химически токсичен, как и любой тяжёлый металл, этот эффект выражается слабо по сравнению с его радиотоксичностыо. Токсические свойства плутония появляются как следствие а- радиоактивности.

Для 2 з 8 Ри, 2 39Ри, 24op U) 242p u> 244Pu группа радиационной опасности А, МЗА=з,7-юз Бк; для 2 4>Ри и 2 43Pu группа радиационной опасности Б, МЗА = 3,7-104 Бк. Если радиологическую токсичность 2 з«и принять за единицу, этот же показатель для плутония и некоторых других элементов образует ряд: 235U 1,6 - 2 39Pu 5,0 - 2 4 1 Аш 3,2 - 9«Sr 4,8 - ^Ra 3,0. Можно видеть, что плутоний не самый опасный среди радионуклидов.

Коротко остановимся на промышленном производстве плутония.

Изотопы плутония нарабатывают на мощных урановых реакторах на медленных нейтронах по реакции (п, у) и в реакторах-размножителях на быстрых нейтронах. Изотопы плутония также образуются в энергетических реакторах. К концу 20-го века в мире было произведено в общей сложности -1300 тонн плутония, из которого ~300 т для оружейного использования, остальное - побочный продукт АЭС (реакторный плутоний).

Оружейный плутоний отличает от реакторного не столько степень обогащения и химический состав, сколько изотопный состав, сложным образом зависящий как от времени облучения урана нейтронами, так и от времени хранения после облучения. Особенно важно содержание изотопов 24°Ри и 2 4‘Ри. Хотя атомную бомбу можно создать при любом содержании этих изотопов в плутонии, тем не менее, наличие 2 4«p u в 239р и определяет качество оружия, т.к. от него зависит нейтронный фон и такие явления, как рост критической массы и тепловой выход. Нейтронный фон влияет на взрывное устройство ограничением общей массы плутония и необходимостью достижения высоких скоростей имплозии. Поэтому бомбы старых схем требовали низкого содержания 2 4ор и. Но в проектах «высокого» дизайна используется плутоний любой чистоты. Поэтому термин «оружейный плутоний» военного значения не имеет; это - экономический параметр: «высокий» дизайн бомбы существенно дороже «низкого».

С ростом доли 24op U) стоимость плутония падает, а критическая масса увеличивается. Содержание 7% 24°Ри делает общую стоимость плутония минимальной. Средний состав оружейного плутония: 93,4% 239 Ри, 6,о%

24°Pu и 0.6% 241 Pu. Тепловая мощность такого плутония 2,2 Вт/кг, уровень спонтанного деления 27100 делений/с. Этот уровень позволяет использовать в оружии 4 кг плутония с очень низкой вероятностью предетонации в хорошей имплозионной системе. Через 20 лет большая часть 24, Ри превратится в ^’Ат, существенно увеличив тепловыделение - до 2.8 Вт/кг. Поскольку 241 Ри прекрасно делится, а 241 Ат - нет, это приведет к снижению запаса реактивности плутония. Нейтронное излучение 5 кг оружейного плутония 300000 нейтронов/с создаёт уровень излучения 0.003 рад/час на расстоянии 1 м. Фон снижается отражателем и взрывчатым веществом, окружающим его, в ю раз. Тем не менее, длительный контакт обслуживающего персонала с ядерным взрывным устройством во время его обслуживания может привести к дозе радиации, равной предельной годовой.

Из-за малой разницы в массах 2 -"* 9 Ри и 24 °Ри эти изотопы не разделяются промышленными способами обогащения. Хотя их можно разделить на электромагнитном сепараторе. Проще, однако, более чистый 2 зэРи получить путём сокращения времени пребывания в реакторе *з*и. Нет причин для снижения содержания 24 °Ри менее 6%, т. к. эта концентрация не мешает создавать эффективные триггеры термоядерных зарядов.

Помимо оружейного существует и реакторный плутоний. Плутоний из ОЯТ состоит из множества изотопов. Состав зависит от типа реактора и рабочего режима. Типичные значения для реактора на лёгкой воде: 2 з 8 Ри - 2%, 239Ри - 61%, 24 °Pll - 24%, 24iPu - 10%, 242 Pll - 3%. Из такого плутония бомбу изготовить трудно (для террористов - практически невозможно), но в странах с развитой технологией реакторный плутоний вполне можно пустить на производство ядерных зарядов.

Табл. 4. Характеристика типов плутония.

Изотопный состав плутония, накапливающегося в реакторе, зависит от степени выгорания топлива. Из пяти основных образовавшихся изотопов два с нечётными Z - 2 39Ри и 24, Ри являются расщепляющимися, т.е. способными к делению под действием тепловых нейтронов, и могут быть использованы в качестве реакторного топлива. В случае использования плутония в качестве реакторного топлива, значение имеет количество накопленного 2 39Ри и 241 Ри. Если извлеченный из отработавшего топлива плутоний повторно использовать в реакторах на быстрых нейтронах, его изотопный состав постепенно становится менее пригодным для ору г жейного использования. После нескольких топливных циклов, накопление 2 з 8 Ри, #2 4«Ри и ^ 2 Pu делает его неподходящим для этой цели. Подмешивание такого материала - удобный метод «денатурировать» плутоний, гарантируя нераспространение делящихся материалов.

Как оружейный, так и реакторный плутоний содержат некоторое количество ^Ри. ^’Ри распадается на 24 ’Am путём излучения р-частицы. Поскольку" дочерний 241 Ат обладает значительно большим периодом полураспада (432 л), чем материнский 241 Ри (14,4 л), его количество в заряде (или в отходах ЯТЦ) возрастает по мере распада ^’Ри. у-Радиация, образующаяся в результате распада 241 Am, значительно сильнее, чем у 241 Ри, следовательно, со временем она также нарастает. Концентрация ®4фи и период его хранения прямо коррелируют с уровнем у-радиации, образующейся в результате увеличения содержания 24 ‘Аш. Плутоний долго хранить нельзя - после его наработки, его надо использовать, иначе его придётся снова повергнуть трудоёмкому и дорогому рециклингу.

Табл. 5. Некоторые характеристики оружейного и реакторного плутония

Наиболее важный в практическом отношении изотоп 2 39Pu получают в ядерных реакторах при длительном облучении нейтронами природного или обогащённого урана:

К сожалению, идут и другие ядерные реакции, приводящие к возникновению других изотопов плутония: 2 - з8 Ри, а4ор и, 24 Фи и 242 Ри, отделение которых от 2 з9Рц, хоть и разрешимая, но весьма сложная задача:

При облучении урана реакторными нейтронами в нём образуются как лёгкие, так и тяжёлые изотопы плутония. Сначала рассмотрим образование изотопов плутония с массой менее 239.

Небольшая часть нейтронов, испускаемых в процессе деления, обладает энергией, достаточной для возбуждения реакции 2 3 8 U(n,2n) 2 3?u. 237 U - р-излучатель и с Т’,/ 2 =6,8 дн превращается в долгоживущий 2 37Np. Этот изотоп в графитовом реакторе на природном уране образуется в количестве 0,1% от общего количества одновременно образующегося 2 39Ри. Захват медленных нейтронов 2 3?Np приводит к образованию 2 3 8 Np. Поперечное сечение этой реакции 170 барн. Цепочка реакций имеет вид:

Поскольку" здесь участвуют два нейтрона, выход пропорционален квадрату дозы облучения и отношение количеств 2з8 Ри к 2 39Ри пропорционально отношению 2 39Ри к 238 U. Пропорциональность соблюдается не совсем точно из-за отставания в образовании 23 ?Np, связанного с 6,8 суточным периодом полураспада ^U. Менее важным источником образования 2 з 8 Ри в 2 39Ри является распад 242 Ст, образующегося в урановых реакторах. 2з 8 Ри образуется также по реакциям:

Поскольку это нейтронная реакция третьего порядка, отношение количества 2 з 8 Ри, образовавшегося таким путём, к 2 39Ри пропорционально квадрату отношения *з9Ри к 2 3 8 U. Однако эта цепочка реакций становится относительно более существенной при работе с ураном, обогащённым ^и.

Концентрация 2 з 8 Ри в образце, содержащем 5,6% 24 °Ри, составляет 0,0115%. Эта величина вносит довольно значительный вклад в суммарную a-активность препаратов, поскольку у ^Pu Ti/2= 86,4 л.

Наличие 2 з 6 Ри в плутонии, получаемом в реакторе, связано с рядом реакций:

Выход 2 з 6 Ри в процессе облучения урана составляет ~ю-9-ио" 8 %.

С точки зрения накопления в уране плутония основные превращения связаны с образованием изотопа 2 39Pu. Но важны и другие побочные реакции, поскольку ими определяется выход и чистота целевого продукта. Относительное содержание тяжёлых изотопов 240 Ри, ^Фи, 242 Ри, а также 2з«Ри, 2 37Np и ^"Аш зависит от дозы нейтронного облучения урана (времени пребывания урана в реакторе). Сечения захвата нейтронов изотопами плутония достаточно велики, чтобы вызвать последовательные реакции (п, у) даже при малых концентрациях 2 39Ри в уране.

Табл. 6. Изотопный состав плутония, выделенного из облучённого нейтронами природного урана. _

Образовавшийся при облучении урана нейтронами 241 Ри переходит в 241 Аш, который сбрасывается в процессе химико-технологической переработки урановых блоков (241 Ат, однако, постепенно снова накапливается в очищенном плутонии). Так, например, a-активность металлического плу"- тония, содержащего 7,5% 24 °Ри, через год увеличивается на 2% (за счёт образования 24, Ат). 24, Ри обладает большим сечением деления на нейтронах реактора, составляющим - поо барн, что важно при использовании плутония в качестве реакторного горючего.

Если уран или плутоний подвергнуть сильному нейтронному облучению, то начинается синтез минорных актинидов:


Образовавшийся из 2 4*Pu 2 4*Am в свою очередь вступает в реакции с нейтронами, образуя 2 з 8 Ри и 2 4 2 Ри:

Этот процесс открывает возможность получения препаратов плутония с относительно низким у-излучением.

Рис. 6. Изменение соотношения изотопов плутония в процессе длительного облучения 2 з9Ри потоком нейтронов 3*10*4 н/см 2 с.

Таким образом, долгоживущие изотопы плутония - ^Ри и 2 44Ри образуются при длительном (около ста дней и более) облучении нейтронами 2 39Ри. При этом выход 2 4 2 Ри достигает нескольких десятков процентов, в то время как количество образовавшегося 2 44Ри составляет доли процента от ^Ри. Одновременно получаются Am, Cm и другие трансплутониевые, а также осколочные элементы.

При производстве плутония, уран (в виде металла) облучают в промышленном реакторе (тепловом или быстром), преимущества которого заключаются в высокой плотности нейтронов, невысокой температуре, в возможности облучения в течение времени намного меньшего, чем кампания реактора.

Основная проблема, возникшая при наработке в реакторе оружейного плутония, заключается в выборе оптимального времени облучения урана. Дело в том, что составляющий основную часть естественного урана изотоп 2 з 8 и захватывает нейтроны, образуя 23 9Ри, тогда как 2 ззи поддерживает цепную реакцию деления. Поскольку для образования тяжёлых изотопов плутония необходим дополнительный захват нейтронов, то количество таких изотопов в уране растёт медленнее, чем количество 2 39Ри. Уран, облучённый в реакторе короткое время, содержит небольшое количество 2 39Ри, зато - более чистого, чем при длительных выдержках, так как вредные тяжёлые изотопы не успели накопиться. Однако, 2 39Рц сам подвержен делению и при увеличении его концентрации в реакторе, скорость его трансмутации возрастает. Поэтому уран надо извлекать из реактора через несколько недель после начала облучения.

Рис. 7- Накопление изотопов плутония в реакторе: l - ^Pu; 2 - 240 Pu (при малых временах образуется плутоний оружейного качества, а при больших временах - реакторного, т.е. негодного к оружейному использованию).

Общую меру облученности топливного элемента выражают в мега- ватт-днях/тонна. Оружейный плутоний получается из элементов, с небольшим количеством МВт-день/т, в нём образуется меньше побочных изотопов. Топливные элементы в современных водо-водяных реакторах достигают уровня в 33000 МВт-день/т. Типичная экспозиция в бридерном реакторе юоо МВт-день/т. Во время Манхэттенского проекта топливо из природного урана получало всего юо МВт-день/т, поэтому, производился очень высококачественный 239 Ри (всего 1 % 2 4°Pll).