Домой / Оборудование / Пластмасса из дерева. Технологический процесс, оборудование и инструменты для изготовления профильных деталей из древесно-полимерной композиции (ДПК) методом экструзии. Что такое «жидкое дерево»

Пластмасса из дерева. Технологический процесс, оборудование и инструменты для изготовления профильных деталей из древесно-полимерной композиции (ДПК) методом экструзии. Что такое «жидкое дерево»

480 руб. | 150 грн. | 7,5 долл. ", MOUSEOFF, FGCOLOR, "#FFFFCC",BGCOLOR, "#393939");" onMouseOut="return nd();"> Диссертация - 480 руб., доставка 10 минут , круглосуточно, без выходных и праздников

Савиновских Андрей Викторович. Получение пластиков из древесных и растительных отходов в закрытых пресс-формах: диссертация... кандидата технических наук: 05.21.03 / Савиновских Андрей Викторович;[Место защиты: Уральский государственный лесотехнический университет].- Екатеринбург, 2016.- 107 с.

Введение

ГЛАВА 1. Аналитический обзор 6

1.1 Древесно-композиционные материалы с синтетическими связующими 6

1.2 Лигноуглеводные и пьезотермопластики 11

1.3 Способы модификации древесных частиц 14

1.4 Лигнин и лигноуглеводный комплекс 19

1.5 Кавитация. Кавитационная обработка растительного сырья 27

1.6 Биоактивация древесных и растительных частиц ферментами.. 33

1.7 Выбор и обоснование направления исследований 35

ГЛАВА 2. Методическая часть 36

2.1 Характеристика исходных веществ 36

2.2 Методики проведения измерений 41

2.3 Подготовка биоактивированного пресс-сырья 41

2.4 Изготовление образцов ДП-БС 41

2.5 Приготовление навески пресс-сырья для пластика 42

ГЛАВА 3. Получение и изучение свойств древесных пластиков без связующего с использованием модификаторов 43

ГЛАВА 4. Влияние химической модификации шелухи пшеницы на свойства РП-БС 57

ГЛАВА 5. Получение и изучение свойств древесных пластиков без связующего с использованием биоактивированого пресс-сырья 73

ГЛАВА 6. Технология получения ДП-БС 89

6.1 Расчет производительности экструдера 89

6.2 Описание технологического процесса производства 93

6.3 Оценка себестоимости готовой продукции 95

Заключение 97

Список литературы

Введение к работе

Актуальность темы исследования. Объемы производства продуктов переработки древесного и растительного сырья постоянно увеличиваются. При этом возрастает и количество различных отходов переработки древеси-ны(опилки, стружка, лигнин) и сельскохозяйственных растений (солома и оболочка семян злаков).

Во многих странах существуют производства древесных композиционных материалов с использованием в качестве полимерной матрицы синтетических термореактивных и термопластичных органических и минеральных связующих, в качестве наполнителей – измельченных отходов растительного происхождения.

Известна возможность получения древесных композиционных материалов плоским горячим прессованием из отходов деревообработки без добавления синтетических связующих, которые получили название пьезотермо-пластики (ПТП), лигноуглеводные древесные пластики (ЛУДП). При этом отмечается, что исходные пресс-композиции обладают низкими показателями пластично-вязкостных свойств, а полученные композиты имеют невысокие показатели физико-механических свойств, особенно водостойкости. И это требует поиска новых способов активации лигнин-углеводного комплекса.

Таким образом, работы, направленные на применение древесных и растительных отходов без использования синтетических связующих с целью создания изделий, являются актуальными.

Работа выполнялась по заданию Минобрнауки РФ, проект № 2830 «Получение древесных пластиков из отходов биомассы дерева и сельскохозяйственных растений» на 2013-2016 гг.

Цель и задачи работы. Целью работы является получение пластиков из древесных (ДП-БС) и сельскохозяйственных отходов (РП-БС) без добавления синтетических связующих с высокими эксплуатационными свойствами.

Для достижения поставленной цели необходимо решить следующие задачи:

Исследовать процесс формирования ДП-БС и РП-БС на основе древесных (опилки сосны) и растительных (шелуха пшеницы) отходов.

Изучить влияния химических модификаторов, а также технологических параметров (температура, влажность) на физико-механические свойства ДП-БС и РП-БС.

Определить рациональные условия получения ДП-БС и РП-БС из древесных и растительных отходов.

Установить влияние биоактивации пресс-сырья активным илом на физи-

ко-механические свойства ДП-БС.

Степень разработанности темы исследования. Анализ научно-технической и патентной литературы показал очень низкую степень разработанности вопросов, связанных с закономерностями формирования структуры и свойств древесного пластика без синтетического связующего.

Научная новизна

    Методом ДСК установлены кинетические закономерности процесса формирования ДП-БС и РП-БС (энергия активации, предэкспоненциальный множитель, порядок реакции).

    Установлено влияние химических модификаторов (пероксид водорода, уротропин, изометилтетрагидрофталевый ангидрид, кавитационный лигнин, гидролизный лигнин) на скорость процесса формирования ДП-БС и РП-БС.

    Получены кинетические закономерности получения ДП-БС с использованием биоактивированных древесных отходов.

Теоретическая значимость работы заключается в установлении закономерностей влияния ряда модификаторов и влажности пресс-сырья из древесных и сельскохозяйственных отходов на физико-механические свойства ДП-БС и РП-БС.

Практическая значимость работы состоит в использовании отходов возобновляемого сырья и экспериментальном доказательстве возможности получения ДП-БС и РП-БС с повышенными физико-механическими свойствами. Предложена рецептура получения ДП-БС и РП-БС. Изделия из ДП-БС обладают низкой эмиссией формальдегида.

Методология и методы исследования. В работе использовались традиционная методология научных исследований и современные методы исследования (дифференциальная сканирующая калориметрия, ИК Фурье-спектроскопия, ПМР 1 Н).

На защиту выносятся

Результаты исследования термокинетики образования ДП-БС, РП-БС и влияния модификаторов и влажности на данный процесс.

Закономерности формирования свойств ДП-БС и РП-БС в закрытых пресс-формах под воздействием температуры, влажности пресс-сырья и его химической модификации.

Степень достоверности результатов исследований обеспечена многократным повторением экспериментов, применением методов статистической обработки полученных результатов измерений.

Апробация работы. Результаты работы доложены и обсуждены на VIII международной научно-технической конференции «Научное творчество молодежи – лесному комплексу» (Екатеринбург, 2012), IX международной научно-технической конференции «Научное творчество молодежи – лесному комплексу» (Екатеринбург, 2013), Международная конференция «Композиционные материалы на древесных и других наполнителях» (г.Мытищи, 2014).

Публикации. По материалам диссертации опубликовано 12 статей, в том числе 4 статьи в изданиях, рекомендованных ВАК.

Объём работы

Диссертация изложена на 107 страницах машинописного текста, содержит 40 таблиц и 51 рисунков. Работа состоит из введения, 6 глав, заключения, списка литературы, включающего 91 ссылки на отечественные и зарубежные работы.

Лигноуглеводные и пьезотермопластики

Лигноуглеводные и пьезотермопластики. Эти материалы изготавливаются из древесных опилок или другого растительного сырья высокотемпературной обработкой пресс-массы без ввода специальных синтетических связующих. Технологический процесс производства лигноуглеводных древесных пластиков состоит из следующих операций: подготовки, сушки и дозирования древесных частиц; формирования ковра, холодной его подпрессовки, горячего прессования и охлаждения без снятия давления. При подготовке пресс-массы древесные частицы сортируют, затем фракция крупностью более 0,5 мм дополнительно измельчается, кондиционные опилки поступают в сушилку, а затем в расстилочную машину. Ковер формируется на поддонах, покрытых слоем талька или антиадгезионной жидкости. Сначала готовый ковер подается в пресс для холодной подпрессовки, которая длится в течение 1,5 мин при давлении 1- 1,5 МПа, после чего направляется на горячее прессование при давлении 1,5-5 МПа и температуре 160-180 С. Прессование плит толщиной 10 мм продолжается 40 мин.

Под воздействием температуры происходят частичный гидролиз полисахаридов древесины и образование органических кислот, которые являются катализаторами, способствующими деструкции лигноуглеводного комплекса. Образовавшиеся химически активные продукты (лигнин и углеводы) взаимодействуют между собой при прессовании. В результате образуется более плотный и прочный материал, чем древесина.

Сырье для производства лигноуглеводного древесного пластика получают обработкой древесины хвойных и лиственных пород. Наряду с опилками, станочной стружкой, дробленкой, для получения пластика могут быть использованы кора в смеси с древесиной, дробленые лесосечные отходы и некоторые одревесневшие сельскохозяйственные отходы. Примеси в сырье частично сгнившей древесины улучшают физико-механические свойства лигноуглеводных пластиков.

По сравнению с древесностружечными плитами, лигноуглеводные пластики обладают рядом преимуществ: они не подвержены старению из-за деструкции органического вяжущего и их прочностные показатели не снижаются со временем; при эксплуатации нет токсичных выделений в окружающую среду. Существенными недостатками производства лигноуглеводных пластиков являются необходимость мощного прессового оборудования и длительность цикла прессования .

Отмечено что под влиянием давления и температуры размельченная растительное сырье приобретает способность образовывать прочный и твердый материал темного цвета, который может формоваться. Этот материал получил название пьезотермопластик (ПТП) .

Исходным сырьем, наряду с опилками, могут служить измельченная древесина хвойных и лиственных пород, льняная и конопляная костра, камыш, гидролизный лигнин, одубина.

Существует несколько способов получения ПТП, прошедших глубокую проработку и внедрение в производство, но не нашедшего дальнейшего применения в связи с высокими энергозатратами: 1) одностадийный способ получения ПТП (А.Н. Минин. Белорусский технологический институт) ; 2) двухстадийный способ получения пластиков из гидролизованных опилок (Н.Я. Солечник, Ленинградская ЛТА) ; 3) технология получения лигноуглеводных древесных пластиков (ЛУДП) (ВН. Петри, Уральский ЛТИ) ; 4) технология парового взрыва (Я.А. Гравитис, Институт химии древесины. Латвийская АН) . Пьезотермопластики подразделяют на изоляционные, полутвердые, твердые и сверхтвердые.

При средней плотности 700-1100 кг/м3 пьезотермические пластики, изготовленные из березовых опилок, имеют предел прочности при статическом изгибе 8-11 МПа. При повышении средней плотности до 1350-1430 кг/м3 предел прочности при статическом изгибе достигает 25-40 МПа.

Высокие физико-механические свойства пьезотермопластиков позволяют применять их для изготовления полов, дверей, а также в качестве отделочного материала. Разновидностью древесных пластиков является вибролит, технологические особенности которого, заключаются в частичном измельчении опилок и мелкой стружки на вибромельнице, перемешивании тонко размолотой массы с водой и затем получаем шлам. Из смеси шлама с частицами величиной 0,5-2 мм в отливной машине формируется ковер, обезвоживаемый вакуум-насосом. Полученная пресс-масса поступает на холодное и горячее прессование. Готовые плиты транспортируют в закалочную камеру, где в течение 3-5 ч при температуре 120-160 С они подвергаются термической обработке, вследствие чего почти в 3 раза снижается их водопоглощение и более чем в 2 раза - разбухание.

Вибролит применяют для настила черного пола, устройства перегородок, облицовки панелей стен в общественных зданиях, изготовлении встроенной мебели и щитовых дверей.

Начиная с 30-х годов в СССР получением плитных материалов путём пьезотермической обработки растительного сырья без применения традиционных связующих занимались многие исследователи. Работы велись в следующих направлениях: 1) прессование естественных, ничем не обработанных опилок ; 2) прессование опилок, подвергнутых предварительно автоклавной обработке водяным паром (предгидролиз) или водяным паром с катализатором (минеральная кислота) ; 3) прессование опилок, предварительно обработанных химическими реагентами: а) желатинирование пресс-массы (хлором, аммиаком, серной кислотой и др. веществам) для её частичного гидролиза и обогащения веществами, обладающими связующими свойствами ; б) химическая поликонденсация пресс-массы с участием других химических веществ (фурфурол, фенол, формальдегид, ацетон, щелочной и гидролизный лигнины и др.) .

Подготовка биоактивированного пресс-сырья

Эндотермический минимум отвечает процессу гидролизу лигнин – углеводного комплекса и легкогидрализуемой части целлюлозы (полисахаридов).

Экзотермический максимум соответствует процессам поликонденсации, которые и обуславливают процесс образования ДП-БС. Так как процесс катализируется кислотами, которые образуются при пиролизе древесины, а также за счет наличия смоляных кислот, содержащихся в составе экстрактивных веществ – это реакция n-го порядка с автокатализом.

Для древесных отходов с модифицирующими добавками (пероксид водорода, уротропин, ИМТГФА) максимумы пиков на кривых ДСК сдвигаются влево, что указывает на то, что данные соединения выступают в качестве катализаторов вышеуказанных процессов (Т1 100-120 0С, Т2 180-220 0С), ускоряя процесс гидролиза полисахаридов древесины, а также лигнин-углеводного комплекса.

Из табл.3.2 видно, что на первой стадии с увеличением влажности пресс-сырья увеличивается эффективная энергия активации (с 66,7 до 147,3 кДж/моль), что свидетельствует о большей степени гидролитической деструкции древесины. Применение модификаторов приводит к уменьшению эффективной энергии активации, что указывает на их каталитическое действие.

Значения эффективной энергии активации на второй стадии процесса для модифицированного пресс-сырья с увеличением влажности изменяется незначительно.

Применение модификаторов приводит к снижению эффективной энергии активации и на второй стадии процесса. Анализ кинетических уравнений показал, что наилучшей моделью на первой стадии процесса является реакцией n-порядка, на второй стадии – n-порядка с автоускорением: A 1 B 2 C.

Используя кинетические параметры процесса, были рассчитаны t50 и t90 (время, необходимое для достижения степени превращения 50 и 90%) для не модифицированного и модифицированного пресс-сырья (табл.3.3), а также представлены кривые степени превращения (рис.3.4-3.6).

Зависимость степени превращения от времени при различных температурах (сосна, исходная влажность пресс-сырья– 8%) Рисунок 3.5 - Зависимость степени превращения от времени при различных температурах (сосна, модификатор – уротропин, исходная влажность пресс-сырья – 12%)

Зависимость степени превращения от времени при различных температурах (сосна, модификатор – пероксид водорода, исходная влажность пресс-сырья – 12%) Таблица 3.3 – Значения времени достижения степени превращения 50% и 90% при различных температурах № п/п Степень превращения Пресс-сырье с влажностью 8% Пресс-сырье свлажностью 12%(модификатор -1,8% H2O2, %) Пресс-сырье свлажностью 12%(модификатор - 4%C6H12N4, %)

Использование пероксида водорода приводит к ускорению процесса на первой стадии более чем в 4 раза, чем при модификации пресс-сырья уротропином. Аналогичная закономерность наблюдается и на второй стадии процесса. По суммарному времени формирования ДП-БС активность пресс-сырья можно расположить в следующий ряд: (немодифицированное пресс-сырье) (пресс-сырье модифицированное уротропином) (пресс-сырье модифицированное перекисью водорода). С целью установления влияния влажности и содержания количества модификатора в пресс-сырье на эксплуатационные свойства ДП-БС, было проведено математическое планирование эксперимента. Предварительно проведено исследование влияние влажности исходного пресс-сырья на физико-механические свойства ДП-БС. Результаты приведены в табл. 3.4. Установлено, что чем больше исходная влажность пресс-сырья, тем меньше физико-механические свойства, такие как прочность при изгибе, твердость, модуль упругости при изгибе. По нашему мнению это связано с большей степенью термогидролитической деструкцией лигноуглеводного комплекса. Таблица 3.4 - Физико-механические свойства ДП-БС полученные при различной влажности пресс-материала

Таким образом, физико-механические свойства ДП-БС зависят от рецептуры и условий его получения. Так для пластика с высокими физико механическими свойствами нужно использовать следующий состав: содержание лигнина 3%, содержание ИМТГФА 4%, исходная влажность пресс-сырья 6% и температура горячего прессования 1800C. Для пластика с низкими значениями водопоглощения и разбухания требуется использовать состав: содержание лигнина 68%, содержание ИМТГФА 2%, исходная влажность пресс-сырья 17% и температура горячего прессования 195 C0.

Влияние химической модификации шелухи пшеницы на свойства РП-БС

Глубина протекания термогидролитической деструкции лигнина древесины и растительного сырья зависит от вида применяемого химического модификатора.

Проведенные нами исследования формальной кинетики получения пластиков показывают, что лигнин хвойных пород (сосна) имеет большую реакционноспособность, чем лигнин однолетних растений (шелуха пшеницы). Эти результаты согласуются с результатами по окислению модельных соединений лигнина хвойных, лиственных пород и лигнина растительного происхождения. Анализ литературных показал, что теоретические исследования особенностей превращения древесины при энзиматическом воздействий дали возможность разработать биотехнологию древесных пластиков на основе частичной биодеградации лигноуглеводного комплекса.

Известно, биотрансформированные древесные частицы существенно изменяют свою пластичность. Также породный состав древесного сырья оказывает значительные влияние на физико-механические свойства пластика.

Биоактивированая обработка древесных отходов различными видами лигноразрушающими грибами, бактериями, в нашем случае активным илом, является перспективным для изготовления пресс-сырья для ДП-БС(Аи).

Первоначально были изучены закономерности процесса получения ДП-БС(Аи) на основе древесных отходов с использованием активного ила (рис 5.1) с различным сроком биоактивации. 0,5 7 суток 14 суток

Исследование процесса формирования ДП-БС(Аи) методом ДСК показало, что на кривых w = f(T) (рис. 5.2) имеется два экзотермических максимума. Это указывает на то, что процесс можно представить как две параллельные реакции, соответствующие для биоактивированного и неактивированного пресс-сырья, т.е. A 1 B и C 2 D. При этом реакции 1 и 2 являются реакциями n-порядка).

Определены кинетические параметры процесса образования ДП-БС(Аи). Результаты приведены в табл. 5.1. Таблица 5.1 - Кинетические параметры процесса образования ДП-БС(Аи)

На второй стадий процесса получения ДП-БС(Аи) значения эффективной энергии активации имеет один и тот же порядок, что и для древесного пресс-сырья (см. гл. 3). Это указывает на то, что этот экзотермический пик соответствует не биоактивированного древесного пресс-сырью. С использованием кинетических параметров процесса, были рассчитаны t50 и t90 (время, необходимое для достижения степени превращения 50 и 90%) модифицированного пресс-сырья (рис.5.3, 5.4).

Рисунок 5.3 - Значения времени превращения ДП-БС(Аи) при различных температурах (время биоактивации 7 суток) Рисунок 5.4 - Значения времени превращения ДП-БС(Аи) при различных температурах (время биоактиваций 14 суток)

С целью установления влияния активного ила и кавитационного лигнина на физико-механические свойства ДП-БС(Аи) была составлена матрица планирования эксперимента на основе регрессионного дробного математического планирования вида 25-1 (см. табл 5.2).

В качестве независимых факторов были использованы: Z 1 – содержание кавитационного лигнина, %, Z 2 – температура горячего прессования, C, Z 3 – расход активного ила, %, Z 4 – продолжительность выдержки (биоактивации), сут; Z 5 – исходная влажность пресс-сырья, %.

За выходные параметры взяты: плотность (P, кг/м3), прочность при изгибе (П, МПа), твердость (Т, МПа), водопоглощение (В), разбухание (L, %), модуль упругости при изгибе (Eи, МПа), ударная вязкость (А, кДж/м2).

Согласно плану эксперимента были изготовлены образцы в виде дисков и определены их физико-механические свойства. Экспериментальные данные были обработаны и получены изучения уравнении регрессий в виде линейной, полинома 1 и 2 степени с оценкой значимости факторов и адекватности уравнений, которые представлены в табл.5.2-5.4. Таблица 5.2 - Матрица планирования и результаты эксперимента (трехуровневый пятифакторный математический план) а) температуры горячего прессования и содержания кавитационного лигнина; б) расхода иловой смеси и температуры прессования; в) влажности пресс-сырья и продолжительности биоактивации; г) продолжительности биоактивации и содержания кавитационного лигнина.

Установлено, плотность ДП-БС(Аи) при увеличении содержания кавитационного лигнина в пресс-сырье носит экстремальный характер: минимальная плотность 1250 кг/м3 достигается при содержании КЛ - 42%. Зависимость плотности ДП-БС(Аи) от продолжительности биоактивации пресс-сырья также имеет экстремальный характер и максимальное значение достигается при 14 суток биоактивации (рис 5.5в).

Оценка себестоимости готовой продукции

Проведенные исследования по получению ДП-БС, ДП-БС(Аи) и РП-БС (см. гл. 3,4,5) показывают что физико-механические свойства пластика зависят от рецептуры пресс-сырья, вида химического модификатора и условия его изготовления.

В табл. 6.1 приведены физико-механические свойства пластиков (ДП-БС, ДП-БС(Аи) и РП-БС), полученных при рациональных условиях.

Из анализа полученных результатов (табл. 6.1) видно, что для изготовления изделий имеющих высокие физико-механические свойства, рекомендуется пресс-композиция следующего состава: древесные отходы (сосновые опилки), модификатор – пероксид водорода (расход - 1,8%) исходная влажность – 12%.

Для повышения производительности предлагается экструзионный способ, который позволяет изготавливать погонажные изделия.

В диссертационной работе рассмотрено производство плинтуса. Для соблюдения условий, определенных при горячем прессовании в закрытых пресс-формах, экструзионная головка состоит из двух частей (обогреваемая часть головки и вторая – без обогрева). При этом время пребывания пресс-композиции в обогреваемой части экструзионной головки – 10 мин.

Для определения годового объема производства был выполнен расчет производительности экструдера.

Для одношнекового экструдера с переменной (уменьшающейся) глубинной нарезки спирального канала расчет объемной производительности (Q, см3/мин) можно проводить следующим образом :

Здесь А1, В1, С1 – постоянные соответственно прямого и двух обратных потоков при переменной глубине нарезки шнека, см3; Таблица 6.1 – Физико-механические свойства ДП-БС, ДП-БС(Аи) и РП-БС (сводная таблица) № п/п1245 6 Показатель Влажностьпресс-сырья,% Модификатор ДП-БС(Аи) ДП-БС РП-БС 12% (4%-C6H12N4) 12% (1,8%-Н202) КЛ - 3% Расход АИ-37% Влажность - 10% ГЛ - 3% ИМТГФА-4% Влажность - 6% ГЛ - 68% ИМТГФА-2,5% Влажность-17,9% Влажность - 12% ГЛ - 3%Пероксидводорода–0,06%Влажность- 12% ГЛ - 35%Пероксидводорода- 5%Влажность– 12%

Прочность при изгибе, МПа 8 12,8 10,3 9,6 12,0 - 8 9,7 Твердость, МПа 29 29,9 27,7 59 69 20 19 34 Модуль упругости при изгибе, МПа 1038 2909,9 1038,6 732,6 2154 1402 1526 1915 Водопоглощение, % 59,1 148 121,7 43 59 34 143 139 Разбухание, % 6,0 12 8 3 5,0 1,0 7 7,0 1 К – коэффициент геометрической формы головки, К=0,00165 см3; n – частота вращения шнека, n=40 об/мин. где t – шаг нарезки, см принято t = 0,8D; - число заходов нарезки шнека, =1; e – ширина гребня шнека, см; e = 0,08D; – коэффициент геометрических параметров шнека:

Коэффициенты,a,b зависят от геометрической размеров шнека. Их легко рассчитать, если имеется чертеж шнека, из которого берут следующие величины: h1 – глубина спирального канала в начале зоны питания, см; h2 – глубина спирального канала в начале зоны сжатия, см; h3 – глубина спирального канала в зоне дозирования, см; Если размеры шнека неизвестны (за исключением D и L, которые известны из марки экструдера), то принимают h1=0,13D. После этого вычисляют остальные параметры: где L – длина шнека, см; L0 – длина шнека до зоны сжатия, см; где Lн – длина напорной части шнека, см; Lн=0,5L. где і - степень сжатия материала; і=2,1. Полученные результаты расчетов по вышеприведенным формулам позволяют рассчитать некоторые другие параметры шнека.

Древесные отходы сортируются на виброситах (поз.1) от крупных частиц, затем древесные частицы проходят металлоискатель (поз.3). Крупная фракция попадает в молотковую дробилку (поз.2) и после этого возвращается на вибросито (поз.1). С вибросита мелкие частицы пневмотранспортом подаются в циклон (поз.4), а затем в бункер (поз.5), откуда порционным винтовым транспортером подаются в сушилку барабанного типа (поз.6), древесные частицы сушат до влажности 6%. Измельченные древесные отходы поступают в циклон (поз.7), затем в бункер сухих измельченных отходов (поз.8) с винтовым транспортером, посредством которого они подаются на ленточные весы (поз.9).

Приготовление раствора пероксида водорода происходит в баке (поз.10) для смешения с водой. Пероксид водорода дозируется с помощью весов (поз.11). Подача необходимого количества воды регулируется расходомером. Концентрация пероксида водорода должна составлять 1,8%. Ленточные весы подают необходимое количество измельченных частиц древесины в смеситель непрерывного действия (поз.12), куда также поступает определенное количество раствора модификаторов. В смесителе осуществляется тщательное перемешивание компонентов, влажность пресс-сырья должна составлять 12%.

Затем пресс-сырье попадает в распределительную воронку (поз.13), откуда поступает в бункер (поз.14) готового пресс-сырья. Бункер является основным буферным складом для обеспечения бесперебойной работы установок. Бункер (поз.14) снабжен шнековым дозатором (поз.15), при помощи которого осуществляется загрузка готовой композицией в бункер экструзионной установки (поз.16), при помощи которого готовая композиция подается в экструзионную головку.

Канал экструзионной установки (поз.17) разогревается до температуры 1800С, время пребывания в обогреваемой части составляет 10 мин, в необогреваемой так же 10 мин.

Отпрессованное изделие (поз.18) направляется на стадию обрезки, выбраковки и сортировки, затем поступает на стадию механической обработки. После стадии контроля, готовые изделия направляется на склад готовой продукции. Рисунок 6.1 Технологическая схема производства изделия в форме плинтуса ДП-БС из отходов деревообработки без добавления связующих методом экструзии

В таблице 6.2 представлен расчет годовой потребности в сырье для производства плинтуса. Предполагаемая годовая производительность линии по производству данного вида продукции составляет 1 тонна. Таблица 6.3 – Расчет потребности в сырье и материалах Вид сырья Норма расхода (1 т), Стоимость 1 кг сырья, руб. Сумма затрат на 1т продукции, тыс.руб. Сосновые опилки 0,945 8 7,56 Техническая вода 0,048 7 0,33 Пероксид водорода 0,007 80 0,56 Итого: 8,45 Сумма затрат для приобретения сырья на одну тонну готовой продукции производства составит 8,456 тысяч рублей. По сравнению с производством данного вида продукции из ДПКТ, которое составила 47,65 тысяч рублей. Таким образом, производство плинтуса из ДП-БС является экономически целесообразным. При производстве 50 т/г экономия по сырью составит 1,96 млн.руб.

К сожалению, всем нам известный и столь распространенный во всем мире пластик содержит вредные для здоровья человека вещества. Более того, в его производстве используются нефтепродукты. Однако до недавнего времени альтернативы этому дешевому материалу фактически не было. Конечно, новые конструкционные материалы появляются постоянно. Это клееная фанера, древесностружечные и древесноволокнистые плиты. Есть свои новинки и в бетонной индустрии, металлургии, стекольной промышленности. Тем не менее, по стоимости, а, значит, и доступности им все-таки далековато до пластика.

Вначале нового тысячелетия ученым удалось создать принципиально новый конструкционный материал, который в ближайшие десятилетия может практически полностью заменить привычный пластик. Это термопластичный древесно-полимерный композит (ДПКТ или ДПК), а в простонародье - «жидкое дерево». В его производстве используются первичное (вторичное) сырье ПП, ПЭ или ПВХ плюс древесные добавки (древесная мука, прочие растительные волокна) и вспомогательные присадки. Эффект превзошел все ожидания. Новейший материал не только экологичен (содержание серы сокращено на 90%), но и, сочетая в себе лучшие свойства дерева и пластмассы, сохранил относительно низкую себестоимость.

По оценкам экспертов, ежегодный рост продаж ДПК в мире составляет около 20%. Так что же это за чудо, которого так долго ждали архитекторы, конструкторы и производственники? Попробуем разобраться.

Применение и обработка

Благодаря своим свойствам древесно-полимерный композит отлично применяется в самых различных областях. Материалы отличаются однородностью и гладкостью поверхности, пластичностью, стойки к атмосферному и биологическому воздействию, а срок эксплуатации даже в жестких уличных условиях достигает 50 лет.

Всё это позволяет использовать ДПК в производстве различных архитектурных и строительных материалов: плинтусов, вагонки, подоконников, профилей, декоративных элементов, а также наполнителей.

Изготавливают из ДПК и готовые к использованию изделия: ламинат, напольные покрытия, мебельные листы, мебель, кабельные коробки, многокамерные оконные профили и даже декинг - профиль для изготовления причалов и пирсов.

Физико-механические свойства древесно-полимерного композита предоставляют широкие возможности для его обработки. Материал не теряет своей формы и прочности , приняв в себя до 4% влаги. Из него можно изготавливать облегченные, пустотелые вещи. Монтируется он как с помощью гвоздей и шурупов, так и на специальные защелки.

А ещё, ДПК можно фанеровать шпоном, ламинировать пленками и листовыми пластиками, красить любыми красками и лаками, получать различные декоративные эффекты, добавляя пигменты в композицию и пр.

Полученные из ДПК изделия легко поддаются механической обработке. Они легко пилятся, сверлятся, режутся, клеятся, свариваются друг с другом, гнутся (после предварительного нагрева горелкой), а, если в состав материала добавлена мука из мягких пород дерева или целлюлозосодержащие отходы, то это придает изделию ещё и повышенную пластичность.

Наконец, ДПК, помимо эстетичности, который ему придает внешний вид, приятен и для обоняния, обладая легким древесным запахом.

Технология производства

Для изготовления древесно-полимерного композита используется ряд компонентов. В первую очередь это, конечно, измельченное древесное или целлюлозосодержащее сырье. То есть это может быть не только древесина, но и кукуруза, рис, соя, солома, бумага, опилки и пр. Второй основной составляющей ДПК являются синтетические связующие. К ним относятся: полиэтилен, пропилен ПВХ и др. Остальные компоненты - это дополнительные добавки, состав которых варьируется в зависимости от предназначения будущего изделия. К наиболее распространенным относятся: красители, пигменты, антиоксиданты, противоударные модификаторы, свето- и термостабилизаторы, антипирены и антисептики для защиты от огня и гниения, гидрофобные добавки для устойчивы к сырости, вспенивающие агенты для снижения плотности ДПК.

Объем древесных частиц в материале может составлять от 30 до 70%, а их размер от 0,7 до 1,5 мм. Тонкие фракции используются в производстве готовых профилей, не требующих дополнительной обработки поверхности. Средние подходят под покраску или отделку шпоном. Грубые - для технических целей.

Объем синтетических связующи х также варьируется и может составлять от 2 до 55%. Зависит это опять же от предназначения будущего изделия. Что касается дополнительных добавок, то их объем в материале не превышает 15%.

Кстати, не так давно немецким разработчикам удалось изготовить «жидкое дерево» идеального качества . Специалисты института Фраунгофера создали его из лигнина. Этот материал получают из древесины. ДПК под названием Arboform является абсолютно не токсичным продуктом. Более того, если обычный древесно-полимерный композит можно перерабатывать 3-4 раза, то этот до 10 раз. К чему мы это? Дело в том, что в Китае индустрия по производству ДПК разрастается как нигде в мире. И, если в Европе и США созданные материалы проходят серию тестирований, то в Поднебесной себя этим не утруждают и поставляют на рынок, в том числе международный, продукт не самого лучшего качества.

Теперь об оборудовании для производства ДПК . В его стандартный состав входят: экструдер двухшнековый, фильера формовки, стол калибрации и охлаждения, тянущее устройство, отрезное устройство по длине, деление по ширине (при необходимости) и укладчик. Вся линия отличается компактностью, а управление ей, обычно, полностью автоматизировано. В комплектации некоторых моделей присутствуют также: мельница (измельчитель сырья) автозагрузчик сырья, и смеситель.

Производителями таких линий и модулей являются в основном китайские компании . Лидеры среди них - WPC, Zhangjiagang City Boxin Machinery и др. Качество техники достойного уровня, тем более, что основные узлы для них производятся европейскими машиностроительными заводами.

Назначение: изобретение относится к производству изделий из древесного пластика. Сущность изобретения: предварительно по всему периметру внутренней рабочей части пресс-формы образуют зазор, в который укладывают слой из древесно-полимерного материала, содержащего 10 - 30% термопластичного связующего, после чего оставшийся объем пресс-формы засыпают древесными частицами с влажностью 6 - 25%. Горячее прессование осуществляют при давлении 70 - 120 кг/см 2 и при температуре 170 - 200 o С, причем соотношение толщины слоя из древесно-полимерного материала и толщины изделия составляет (1-2) : (5-50). Древесные частицы засыпают в пресс-форму с размером не более 0,5 мм, а слой из древесно-полимерного материала может быть образован укладкой предварительно изготовленных пластин из древесно-полимерного материала. 7 з.п. ф-лы, 5 ил., 1 табл.

Изобретение относится к области производства древесных пластиков из отходов лесоперерабатывающих промышленных производств и может быть использовано в качестве строительных материалов /облицовочные плиты, покрытие полов, черепица, в производстве мебели/. Известен способ изготовления из древесных и других растительных веществ, при котором древесные частицы помещают в герметичную пресс-форму, нагревают без доступа воздуха и выхода паров и газов под давлением 1 - 50 МПа и выдерживают при максимальном давлении от 3 до 70 минут (SU, авт. св. N 38290, кл. E 04 C 2/10, 1934 г.). Недостатком этого способа является низкое значение физико-механических и эксплуатационных характеристик получаемых изделий. Наиболее близким по технической сущности и достигаемому результату является способ изготовления строительных изделий из древесных пластиков, включающий измельчение древесины, нагрев ее до 170 - 270 o C и прессование в герметичной пресс-форме без доступа воздуха и выхода паров и газов при давлении 5 - 50 МПа в течение 3 - 70 мин /SU, авт. св. N 38070, кл. E 04 C 2/10, 1934 г./. Указанные способы имеют следующие недостатки: сложность решения вопроса герметизации пресс-формы при горячем прессовании под давлением, нестабильность свойств изделий при нарушении, хотя бы частичном, герметизации, появление открытой пористости при использовании пониженного прессования, при котором проще обеспечить герметизацию. Наличие открытых пор ухудшает физико-механические и эксплуатационные характеристики изделия древесного пластика, в частности, на водопоглощение. Задачей изобретения является упрощение герметизации пресс-формы при повышении ее надежности и при улучшении физико-механических и других эксплуатационных свойств изделий, изготавливаемых из древесных пластиков. Задача создания надежной герметичности пресс-формы осуществляется за счет размещения слоя древесно-полимерной массы в зазоре между матрицами и пуансонами. При нагревании пресс-формы до температуры прессования древесно-полимерная масса приобретает пластичность, затекает под давлением прессования в зазор между матрицей и пуансонами, что и обеспечивает надежную герметичность пресс-формы. Необходимая вязкость массы, обеспечивающая надежную герметичность, зависит от количества термопластичного связующего и определяется давлением прессования, а также давлением паров и газов, возникающих при гидролизе древесных частиц. Повышение эксплуатационных характеристик, в частности уменьшение пористости, достигается созданием на поверхности древесного пластика слоя древесно-полимерного водонепроницаемого материала. Этот слой в процессе изготовления изделия обеспечивает герметизацию пресс-формы при прессовании. Поверхностный водонепроницаемый слой образуется в процессе прессования путем послойного загружения пресс-формы: сначала нижний горизонтальный слой, содержащий древесные частицы и 5 - 30 вес.% термопластичного связующего, затем слой древесных частиц и верхний горизонтальный слой аналогичный нижнему. Поверхностный горизонтальный водонепроницаемый слой может быть образован из заранее изготовленных прессованием тонких листов древесно-полимерного материала, содержащего 5 - 30% термопластичного связующего, и последующей укладки их послойно в пресс-форму: нижний и верхний слой - древесно-полимерный материал, между ними - древесные частицы. Между стенками пресс-формы и слоем древесных частиц располагают лист древесно-полимерного материала. Заполнение пресс-формы по прототипу и по изобретению осуществляется по схемам, приведенным на фиг. 1 - 5. На фиг. 1 изображена схема засыпки шихты по прототипу, при которой прессуемой смесью 1 заполняется вся пресс-форма 2, а уплотнение осуществляется установкой резиновых уплотнителей 3, размещаемых в зазоре между матрицей и пуансоном по всему периметру внутренней рабочей части пресс-формы. На фиг. 2 изображена схема заполнения пресс-формы, согласно которой сначала по всему периметру внутренней рабочей части пресс-формы насыпают слой 1 из древесно-полимерного материала, содержащего 10 - 30% связующего, а оставшийся объем заполняют древесными частицами 2 с влажностью 6 - 25%. На фиг. 3 изображена схема заполнения пресс-формы, согласно которой сначала по всему периметру внутренней рабочей части пресс-формы укладывают предварительно изготовленные пластины 1 из древесно-полимерного материала, содержащего 10 - 30% связующего, а оставшийся объем заполняют древесными частицами 2 с влажностью 6 - 25%. На фиг. 4 изображена схема заполнения пресс-формы, согласно которой кроме укладки слоя 1 из древесно-полимерного материала, содержащего 10 - 30% связующего, на дно формы насыпают нижний горизонтальный слой 2 древесно-полимерного материала, содержащего 5 - 30% связующего, затем насыпают древесные частицы 3 с влажностью 6 - 25%, поверх которого также насыпают горизонтальный слой 4, состав которого аналогичен нижнему горизонтальному слою. На фиг. 5 изображена схема заполнения пресс-формы, которая аналогична схеме на фиг. 4 с тем отличием, что горизонтальные слои 1 образованы не засыпкой смеси из связующего и древесных частиц, а укладкой пластин, предварительно изготовленных из древесно-полимерного материала. Эти горизонтальные слои после прессования и охлаждения изделий образуют поверхностные водонепроницаемые слои. При этом при приготовлении древесно-полимерной смеси из термопластичного полимерного связующего, например, полиэтилена и древесных частиц, в частицы перед их смешиванием со связующим вводят 1 - 5% от их веса муравьиную или уксусную кислоту и повышают влажность частиц до 5 - 25%, причем вместо древесных частиц можно использовать растительные волокна. Образцы древесных пластиков изготавливали по способу прототипу методом горячего прессования в герметичной пресс-форме. Герметизация зазора между матрицей и пуансонами осуществлялась с помощью водоохлаждаемой прокладки из температуростойкой резины. Древесные пластики по предложенному способу изготавливали в обычной пресс-форме с зазором между пуансоном и матрицей до 1 - 1,5 мм. В обоих случаях для получения древесных пластиков использовали древесные частицы хвойных пород размером -0,5 мм, влажностью 15%. Для герметизации матрицы и создания защитного водоотталкивающего слоя по предложенному способу применялась прессмасса следующего состава: древесные частицы с влажностью 15% /хвойные породы размером 0,5 мм/ -85%, вторичные полиэтилена - 15% вес. Режим горячего прессования был одинаков для всех образцов древесных пластиков: температура прессования - 170 o C, давление - 70 кг/см 2 , время выдержки под давлением - 30 мин. В таблице приведены свойства древесных пластиков, полученных по способу-прототипу и предложенному способу. Анализ приведенных в таблице свойств изделий из древесных пластиков, изготовленных по способу прототипу и по изобретению в соответствии со схемами заполнения пресс-формы /см. фиг. 2 - 5/, показал следующее: герметизация пресс-формы, укладываемой в зазор между матрицей и пуансоном пресс-массы, более проста и надежна и обеспечивает более высокие физико-механические характеристики изделий, чем при применении резиновых уплотнений; получение изделий с горизонтальными поверхностными слоями из древесно-полимерной смеси обеспечивает водонепроницаемость изделий и повышение их физико-механических характеристик.

Формула изобретения

1. Способ изготовления изделий прессованием из древесного пластика, включающий измельчение древесины, заполнение пресс-формы, горячее прессование под давлением без доступа воздуха и выпуска паров и газов с последующим охлаждением, отличающийся тем, что предварительно по всему периметру внутренней рабочей части пресс-формы образуют зазор, в который укладывают слой из древесно-полимерного материала, содержащего 10 - 30% термопластичного связующего, после чего оставшийся объем пресс-формы засыпают древесными частицами с влажностью 6 - 25%, а горячее прессование осуществляют при давлении 70 - 120 кг/см 2 и при температуре 170 - 200 o С, причем соотношение толщины слоя из древесно-полимерного материала и толщины изделия составляет (1 - 2) : (5 - 50). 2. Способ по п.1, отличающийся тем, что в пресс-форму засыпают древесные частицы, размер которых составляет не более 0,5 мм. 3. Способ по пп.1 и 2, отличающийся тем, что слой из древесно-полимерного материала образуют укладкой предварительно изготовленных пластин из древесно-полимерного материала. 4. Способ по пп.1 и 2, отличающийся тем, что слой из древесно-полимерного материала образуют засыпкой в форму смеси из термопластичного полимерного связующего и древесных частиц. 5. Способ по пп.1 - 4, отличающийся тем, что древесные частицы размещают между дополнительными верхним и нижним горизонтальными слоями из древесно-полимерного материала, содержащего 5 - 30% связующего. 6. Способ по п.5, отличающийся тем, что горизонтальные слои образованы укладкой предварительно изготовленных пластин из древесно-полимерного материала. 7. Способ по пп.1 - 6, отличающийся тем, что при приготовлении древесно-полимерного материала перед смешиванием со связующим в измельченные древесные частицы вводят 1 - 5% от их веса муравьиную или уксусную кислоту. 8. Способ по пп.1 - 7, отличающийся тем, что при приготовлении древесно-полимерного материала в качестве древесных частиц используют растительные волокна.

Внимание! Цена за 1 шт. Товар отпускается в упаковках по 2 шт . Необходимо вводить кол-во кратное 2.

Пластиковая форма для изготовления тротуарной плитки «Древесный срез средний-38 . Форма предназначена для изготовления тротуарной плитки методом литьевого виброформования (методом вибролитья) из цементной смеси. При правильном подборе состава смеси и использовании виброуплотнения получаются изделия высокой прочности и морозостойкости, превосходящие по долговечности и эстетике вибропресованные.

Стандартная глубина формы позволяет сформировать готовое изделие толщиной: 5см.
Размер отливки: 38 х 38 см.
Текстура поверхности готового изделия: текстура .

Материал формы «Древесный срез средний-38: высокопрочный АБС- пластик, превосходящий по эксплуатационным качествам полипропилен и ПВХ. Форма обладает большей износостойкостью и долговечностью (250-300 отливок). Толщина стенок формы 2-3 мм. Возможен ремонт формы при повреждении и удаление царапин с помощью раствора изготовленного из ацетона с растворенным небольшим кол-вом АБС-пластика (срезанного с края формы).

Для формирования качественного изделия желательно использование ПАН-фиброволокна, пластифицирующих добавок и . Для окрашивания плитки можно использовать . Готовое изделие может быть извлечено из формы не ранее чем через 24-48 часа. В противном случае из-за недостаточной набранной прочности возрастает кол-во брака. Для справки — График твердения бетона в зависимости от температуры. При извлечении запрещается оказывать ударное воздействие на тыльную сторону формы. Мы готовы предоставить подробную информацию по технологии применения формы, рецептуре смеси и необходимому оборудованию любому покупателю нашей продукции.

Состав архитектурного бетона для вибролитья тротуарной плитки «Древесный срез средний-38

Для изделий толщиной > 2 см. оптимально готовить смесь с цементно-песчаным отношением (Ц:П) = 1:3 по массе. Пропорции необходимых материалов приведены для расчета на 1м3 готовой смеси. Для расчета необходимо зная общую площадь и толщину изделий вычислить требуемый объем смеси и соответственно скорректировать данные приведенные в таблице.

  1. (Ц)цемент (M500 Д0) — 475 кг.(396 л.)
  2. (П)песок (карьерный, мытый) — 1425 кг. (950 л.)
  3. вода (25-30% от цемента) * — 142 л.
  4. пластификатор (1.2% от цемента)** — 5.7 кг. (5.2 л.)
    или
    пластификатор (3.0% от цемента) *** — 14.25 кг. (12 л.)
  5. (0.075% общей массы) — 1.5 кг.
  6. пигмент цветной (5% от цемента)**** — 23.75 кг

* Расчет воды в таблице сделан для пластификатора Glenium-115. Необходимое кол-во воды зависит от вида применяемого пластификатора. Эффективность гипперпластификатора MasterGlenium-115 более чем в 2 раза выше чем суперпластификатора С-3, что позволяет снизить В/Ц (уменьшить кол-во воды) и тем самым увеличить прочность, морозостойкость и как следствие — долговечность готового изделия.
** Применяется на выбор только 1 вид пластификатора в указанной в таблице дозировке. Смешение разных пластификаторов недопустимо.
*** Пластификатор С-3 в таблице указан (масса) в виде водного раствора в массовой пропорции 1:2 (1 кг. пластификатора С-3 на 2 л. воды).
**** Кол-во пигмента указанно в оптимальном для получения насыщенного цвета при использовании метода объемной окраски бетона.

Гидрофобизатор «Аквасил» для повышения морозостойкости изделий из бетона

Дополнительного увеличения срока службы изделия «Древесный срез средний-38 можно добиться применяя для защиты кремнийорганический . Применение силиконового гидрофобизатора позволит защитить изделие из бетона (а также дерева или камня) от воздействия влаги, что увеличит морозостойкость изделия и сохранит насыщенность окраски. Применение гидрофобизатора «Аквасил» в рекомендуемой дозировке обеспечивает снижение водопоглощения бетона в 10 раз .

Использовать гидрофобизатор «Аквасил» при изготовлении изделий из бетона можно путем обьемной или поверхностной гидрофобизации:
1) Поверхностная гидрофобизация — Используется раствор из концентрата в воде в обьемном отношении 1:10 для бетона. Раствор наноситься на поверхность изделий валиком, кистью или распылителем в 2 слоя с интервалом 2-3 минуты Средний расход раствора 250-500 мл/м2 (на один слой покрытия) в зависимости от пористости материала.
2) Обьемная гидрофобизация — гидрофобизатор (концентрат, не раствор) вводится в бетонную смесь в количестве 0.4–0.5% от веса вяжущего вещества (цемента).

Купить пластиковую форму «Древесный срез средний-38, а также все необходимые добавки в бетон, пигменты и гидрофобизатор вы можете в интернет-магазине «Легобетон». Квалифицированные консультации по выбору и применению формы и добавок — бесплатно!. Склад удобно расположен в 10 минутах от м. Хорошево. Курьерская доставка или отправка ТК по России.

УДК 674.812

В.Г. Дедюхин, В.Г. Бурындин, Н.М. Мухин, А.В. Артемов

ПОЛУЧЕНИЕ ИЗДЕЛИЙ ПРЕССОВАНИЕМ В ЗАКРЫТЫХ ПРЕСС-ФОРМАХ ИЗ ФЕНОПЛАСТОВ БЕЗ ДОБАВЛЕНИЯ СВЯЗУЮЩИХ

Приведены результаты исследований изучения технологических свойств пресс-композиции из древесных частиц без добавления связующих и физико-механических свойств пластиков из этих композиций; изучено влияние низкомолекулярных (органических и неорганических) модификаторов, а также воды в процессе образования пластиков.

Ключевые слова: древесный пластик, карбамид, текучесть по Рашигу, шлифовальная пыль, фанера.

Запас древесины в России оценивается в 80 млрд м3. Степень ее использования составляет 65 ... 70 %, причем химическим и химико-механическим методом перерабатывают всего 15 ... 17 % (мировой уровень - 50 ... 70 %). На гидролизных предприятиях накапливается 1,5 млн т в год гидролизного лигнина в пересчете на сухое вещество .

Одно из рациональных направлений эффективного использования отходов деревообработки - получение из них пресс-материалов (древесных прессовочных масс) на основе феноло- и карбамидоформальдегидных смол . Однако введение в эти композиции от 11 до 35 % синтетических связующих удорожает стоимость плит и делает их экологически не безопасными.

Поэтому большой интерес представляют древесные пластики, получаемые без добавления связующих. Исходным сырьем могут быть не только мелкие древесные частицы, но и гидролизный лигнин и растительные остатки однолетних растений (костра льна и конопли, стебли хлопчатника, солома и др.). В работе А.Н. Минина такой материал назван пьезотермопла-стиком.

В УГЛТУ ведутся работы по получению материалов из древесных и других растительных отходов без добавления связующих: с 1961 г. в открытых пресс-формах (между обогреваемыми плоскопараллельными плитами) -лигноуглеводный древесный пластик , с 1996 г. в закрытых пресс-формах - древесный пластик без связующего (ДП-БС) .

Технология получения плит и изделий из древесных пластиков без связующего не находит широкого применения из-за длительного цикла прессования, так как пластик охлаждают в пресс-форме под давлением (низкая производительность оборудования и оснастки, а расход тепла большой). Нами предложена технология прессования изделий, основанная на использовании выносных пресс-форм и в качестве тепло- и хладоносителя -воздуха. При этом производительность возрастает в 5 и более раз по сравнению с традиционной технологией для таких пресс-материалов, значительно сокращается расход тепла.

Одним из недостатков древесных пресс-композиций без добавления связующих является их низкая текучесть. Например, текучесть ДП-БС из отходов деревообработки (фракция 0 ... 2 мм) по методу прессования плоского образца-диска при влажности 10 % составляет 78 мм, а при 20 % -95 мм ; текучесть по Рашигу данной пресс-композиции при влажности 10 % - 9 мм, а при 20 % - 29 мм.

Дешевым сырьем для изготовления ДП-БС является шлифовальная пыль от производства фанеры (ТТТП-Ф) и древесностружечных плит (ШП-ДСтП). Так при объеме производства ДСтП 100 тыс. м3/год количество образующейся ШП-ДСтП составляет 7,5 тыс. т . В работе показано, что ШП-ДСтП можно использовать в производстве фенопласта марки 03-010-02, соответствующего требованиям ГОСТ 5689-86 (см. таблицу).

Состав и свойства фенопластов на основе древесной муки и ШП-ДСтП

Показатель Значение показателя для наполнителя

Древесная мука ШП-ДСтП

Состав, %:

фенолформальдегидная смола 42,8 37,5

древесный наполнитель 42,6 42,0

уротропин 6,5 7,0

мумия 4,4 -

известь (гидроксид магния) 0,9 0,7

стеарин 0,7 0,6

каолин - 4,4

нигрозин 1,1 -

Свойства:

прочность при изгибе, МПа 69 66...69

ударная вязкость, кДж/см2 5,9 5,9...7,0

электрическая прочность, кВ/см 14,0 16,7.17,2

Зависимость свойств пресс-материала на основе ШП-Ф без добавления связующего от влажности (при влажности 13 % проведена модификация карбамидом): а -сопротивление сдвигу; б - модуль упругости при изгибе; в - текучесть по Рашигу; г - текучесть по диску

Цель данного исследования - разработка рецептуры ДП-БС на основе ШП-Ф и нахождение оптимальных режимов прессования изделий со свойствами, близкими к свойствам фенопласта 03-010-02.

По текучести ДП-БС на основе ШП-Ф значительно уступает фенопластам, поэтому из него можно изготавливать изделия простой конфигурации. Текучесть материала по Рашигу и по диску в зависимости от его влажности приведена на рисунке.

Известно, что модификация древесины аммиаком значительно увеличивает ее пластичность. Оптимальное количество аммиака составляет 5 % . В качестве источника аммиака предложено использовать карбамид, который в условиях прессования разлагается:

1ЧН2 - С - 1ЧН2 + Н20 -> 2Шз + С02. О

Количество аммиака там и углекислого газа туг, образующихся при разложении карбамида тк можно рассчитать по формулам

там = тк /1,765; туг = 0,733 тк.

По нашему мнению, применение карбамида более целесообразно, так как образующийся углекислый газ создает слабокислую среду, что способствует поликонденсации лигнина и легкогидролизуемой части целлюлозы - гемицеллюлоз. Это совпадает с мнением авторов работ .

Вода в процессе получения древесного пластика без добавления связующего необходима как пластификатор древесины и химический реагент, участвующий в реакциях с компонентами древесины.

Согласно , для протекания химических процессов, происходящих при образовании пластика из сосновых частиц при давлении 2,5 МПа, исходная влажность древесины должна составлять 7 ... 9 %. При использовании лиственных пород (осина, ольха) исходная влажность должна быть несколько выше - 10 ... 12 %. Чтобы придать древесине пластичность, содержание влаги, которое зависит от породы древесины и давления прессования, должно быть еще больше.

Кроме того, при использовании в качестве модификатора карбамида необходимо дополнительное количество воды для его разложения (см. вышеприведенную схему). Количество воды для прохождения реакции можно рассчитать по формуле тв = 0,53 там.

Следовательно, при образовании ДП-БС на основе ШП-Ф с использованием в качестве модификатора карбамида оптимальное содержание воды должно составлять около 13 %.

Для модификации пресс-композиции на основе ШП-Ф было использовано 9 % мас. карбамида. Это позволило значительно повысить вязкоте-кучие свойства пресс-материала. Например, текучесть по Рашигу, при влажности исходного материала 13 % мас., возросла в 3,5 раза, текучесть по диску - с 75 до 84 мм, модуль упругости при изгибе - с 263 до 364 МПа, а сопротивление сдвигу, определенное согласно , уменьшилось с 2,6 до 1,5 МПа

Таким образом можно сделать следующие выводы:

С использованием метода математического планирования эксперимента вида З2 изучено влияние влажности ШП-Ф {Х\ = 11 ± 5 %) и давления прессования (Х2 = 15 ± 10 МПа) на свойства ДП-БС (температура прессования 170 °С);

При обработке результатов экспериментов получены адекватные уравнения регрессии в виде полинома второго порядка:

¥,(аюг) = 34,9 + 6,6 X! + 16,9 Х2 - 1,4 X? - 4,3 Х22 - 3,0 Хх Х2;

Г2(Д:,) = 34,5 - 21,8 X ~ 76,7 Х2 + 26,3 X2 - 3,8 Х22 + 75,5 X Х2.

СПИСОК ЛИТЕРАТУРЫ

1. Базарнова Н.Г. Влияние мочевины на свойства прессованных материалов из древесины, подвергнутой гидротермической обработке / Н.Г. Базарнова, А.И. Галочкин, В.С. Крестьянников // Химия растительного сырья. -1997. - № 1. -С. 17-21.

2. Бурындин В.Г. Изучение возможности использования шлифовальной пыли ДСтП для получения фенопластов / В.Г. Бурындин [и др.] // Технология древесных плит и пластиков: межвуз. сб. - Екатеринбург, УЛТИ, 1994. - С. 82-87.

3. Вигдорович А.И. Древесные композиционные материалы в машиностроении (справочник) / А.И. Вигдорович, Г.В. Сагалаев, А.А. Поздняков. - М.: Машиностроение, 1991.- 152 с.

4. Дедюхин В.Г. Древесные пластики без добавления связующих (ДП-БС): сб. тр., посвященный 70-летию инженерно-экологического факультета УГЛТУ /В.Г. Дедюхин, Н.М. Мухин. - Екатеринбург, 2000. - С. 200-205.

5. Дедюхин В.Г. Исследование текучести древесной пресс-массы без добавления связующего /В.Г. Дедюхин, Н.М. Мухин // Технология древесных плит и пластиков: межвуз. сб. - Екатеринбург: УГЛТА, 1999. - С. 96-101.

6. Дедюхин В.Г. Прессование плитки облицовочной из массы прессовочной без добавления связующего / В.Г. Дедюхин, Л.В. Мясникова, И.В. Пичугин // Технология древесных плит и пластиков: межвуз. сб. - Екатеринбург: УГЛТА, 1997. -С. 94-97.

7. Дедюхин В.Г. Прессованные стеклопластики / В.Г. Дедюхин, В.П. Став-ров. - М.: Химия, 1976. - 272 с.

8. Доронин Ю.Г. Древесные пресс-массы /Ю.Г. Доронин, С.Н. Мирошниченко, И.Я. Шулепов. - М.: Лесн. пром-сть, 1980.- 112 с.

9. Кононов Г.В. Химия древесины и ее основных компонентов /Г.В. Кононов. - М.: МГУЛ, 1999. - 247 с.

10. Минин А.Н. Технология пьезотермопластов /А.Н. Минин. - М.: Лесн. пром-сть, 1965. - 296 с.

11. Отлев И.А. Справочник по производству древесностружечных плит / И.А. Отлев [и др.]. - М.: Лесн. пром-сть, 1990. - 384 с.

12. Плитные материалы и изделия из древесины и других одревесневших растительных остатков без добавления связующих /под ред. В.Н. Петри. - М.: Лесн. пром-сть, 1976. - 360 с.

13. Получение, свойства и применение модифицированной древесины.- Рига: Зинатне, 1973.- 138 с.

14. Щербаков А.С. Технология композиционных древесных материалов /А.С. Щербаков, И.А. Гамова, Л.В. Мельникова. - М.: Экология, 1992. - 192 с.

V. G. Dedyukhin, V. G. Buryndin, N.M. Mukhin, A. V. Artyomov Producing Items out of Phenoplasts by Pressing in Closed Press Molds without Adding Binding Agents

The research results of technological properties of presscomposition made of wood particles without adding binding agents and physicomechanical properties of plastics from these compositions are provided. The influence of low-molecular (organic and inorganic) modifiers and water in plastic formation process are studied.