Домой / Пол / Подъемная сила крыла самолета презентация. Почему летают самолёты. Список использованных источников

Подъемная сила крыла самолета презентация. Почему летают самолёты. Список использованных источников

* Крыло самолета предназначено для создания подъемной силы, необходимой для поддержки самолета в воздухе. Аэродинамическое качество крыла тем больше, чем больше подъемная сила и меньше лобовое сопротивление. Подъемная сила и лобовое сопротивление крыла зависят от геометрических характеристик крыла. Геометрические характеристики крыла сводятся к характеристикам крыла в плане и характеристикам

Крылья современных самолетов по форме в плане эллипсовидные (а), прямоугольные (б), трапециевидные (в), стреловидные (г) треугольные (д)

Угол поперечного V крыла Геометрические характеристики крыла Форма крыла в плане характеризуется размахом, площадью удлинением, сужением, стреловидностью и поперечным V Размахом крыла L называется расстояние между концами крыла по прямой линии. Площадь крыла в плане Sкр ограничена контурами крыла.

Площадь трапециевидного и стреловидного крыльев вычисляет как площади двух трапеций где b 0 - корневая хорда, м; bк- концевая хорда, м; - средняя хорда крыла, м Удлинением крыла называется отношение размаха крыла к средней хорде Если вместо bср подставить его значение из равенства (2. 1), то удлинение крыла будет определяться по формуле Для современных сверхзвуковых и околозвуковых самолетов удлинение крыла не превышает 2 - 5. Для самолетов малых скоростей величина удлинения может достигать 12 -15, а для планеров до 25.

Сужением крыла называется отношение осевой хорды к концевой хорде Для дозвуковых самолетов сужение крыла обычно не превышает 3, а для околозвуковых и сверхзвуковых оно может изменяться в широких пределах. Углом стреловидности называется угол между линией передней кромки крыла и поперечной осью самолета. Стреловидность также может быть замерена по линии фокусов (проходящей на расстоянии 1/4 хорды от ребра атаки) или по другой линии крыла. Для околозвуковых самолетов она достигает 45°, а для сверхзвуковых - до 60°. Углом поперечного V крыла называется угол между поперечной осью самолета и нижней поверхностью крыла. У современных самолетов угол поперечного V колеблется от +5° до -15°. Профилем крыла называется форма его поперечного сечения. Профили могут быть симметричными и несимметричными. Несимметричные в свою очередь могут быть двояковыпуклыми, плосковыпуклыми, вогнутовыпуклыми и. S-образными. Чечевицеобразные и клиновидные могут применяться для сверхзвуковых самолетов. Основными характеристиками профиля являются: хорда профиля, относительная толщина, относительная кривизна

Хордой профиля b называется отрезок прямой, соединяющий две наиболее удаленные точки профиля Формы профилей крыла 1 - симметричный; 2 - не симметричный; 3 - плосковыпуклый; 4 - двояковыпуклый; 5 - S-образный; 6 -ламинизированный; 7 - чечевицеобразный; 8 - ромбовидный; 9 видный

Геометрические характеристики профиля: b - хорда профиля; Смакс - наибольшая толщина; fмакс - стрела кривизны; хскоордината наибольшей толщины Углы атаки крыла

Полная аэродинамическая сила и точка ее приложения R - полная аэродинамическая сила; Y - подъемная сила; Q - сила лобового сопротивления; - угол атаки; q - угол качества Относительной толщиной профиля с называется отношение максимальной толщины Смакc к хорде, выраженное в процентах:

Относительной толщиной профиля с называется отношение максимальной толщины Смакc к хорде, выраженное в процентах: Положение максимальной толщины профиля Хc выражается в процентах от длины хорды и отсчитывается от носка У современных самолетов относительная толщина профиля находится в пределах 416%. Относительной кривизной профиля f называется отношение максимальной кривизны f к хорде, выраженное в процентах. Максимальное расстояние от средней линии профиля до хорды определяет кривизну профиля. Средняя линия профиля проводится на равном расстоянии от верхнего и нижнего обводов профиля. У симметричных профилей относительная кривизна равна нулю, для несимметричных же эта величина отлична от нуля и не превышает 4%.

СРЕДНЯЯ АЭРОДИНАМИЧЕСКАЯ ХОРДА КРЫЛА Средней аэродинамической хордой крыла (САХ) называется хорда такого прямоугольного крыла, которое имеет одинаковые с данным крылом площадь, величину полной аэродинамической силы и положение центра давления (ЦД) при равных углах атаки

Для трапециевидного незакрученного крыла САХ определяется путем геометрического построения. Для этого крыло самолета вычерчивается в плане (и в определенном масштабе). На продолжении корневой хорды откладывается отрезок, равный по величине концевой хорде, а на продолжении концевой хорды (вперед) откладывается отрезок, равный корневой хорде. Концы отрезков соединяют прямой линией. Затем проводят среднюю линию крыла, соединяя прямой середины корневой и концевой хорд. Через точку пересечения этих двух линий и пройдет средняя аэродинамическая хорда (САХ)

Зная величину и положение САХ на самолете и приняв ее как базовую линию, определяют относительно нее положение центра тяжести самолета, центра давления крыла и т. д. Аэродинамическая сила самолета создается крылом и приложена в центре давления. Центр давления и центр тяжести, как правило, не совпадают и поэтому образуется момент сил. Величина этого момента зависит от величины силы и расстояния между ЦТ и центром давления, положение которых определяется как расстояние от начала САХ, выраженное в линейных величинах или в процентах длины САХ.

ЛОБОВОЕ СОПРОТИВЛЕНИЕ КРЫЛА Лобовое сопротивление - это сопротивление движению крыла самолета в воздухе. Оно складывается из профильного, индуктивного и волнового сопротивлений: Хкр=Хпр+Хинд+ХВ. Волновое сопротивление рассматриваться не будет, так как возникает на скоростях полета свыше 450 км/ч. Профильное сопротивление слагается из сопротивления давления и трения: Хпр=ХД+Хтр. Сопротивление давления - это разность давлений перед и за крылом. Чем больше эта разность, тем больше сопротивление давления. Разность давлений зависит от формы профиля, его относительной толщины и кривизны, на рисунке обозначено Сх - коэффициент профильного сопротивления).

Чем больше относительная толщина с профиля, тем больше повышается давление перед крылом и больше уменьшается за крылом, на его задней кромке. В результате увеличивается разность давлений и, как следствие, увеличивается сопротивление давления. При обтекании профиля крыла воздушным потоком на углах атаки, близких к критическому, сопротивление давления значительно возрастает. При этом размеры завихренной спутной струи и самих вихрей резко увеличиваются Сопротивление трения возникает вследствие проявления вязкости воздуха в пограничном слое обтекающего профиля крыла. Величина сил трения зависит от структуры пограничного слоя и состояния обтекаемой поверхности крыла (его шероховатости). В ламинарном пограничном слое воздуха сопротивление трения меньше, чем в турбулентном пограничном слое. Следовательно, чем большую часть поверхности крыла обтекает ламинарный пограничный слой воздушного потока, тем меньше сопротивление трения. На величину сопротивления трения влияют: скорость самолета; шероховатость поверхности; форма крыла. Чем больше скорость полета, с худшим качеством обработана поверхность крыла и толще профиль крыла, тем больше сопротивление трения.

Индуктивное сопротивление - это прирост лобового сопротивления, связанный с образованием подъемной силы крыла При обтекании крыла невозмущенным воздушным потоком возникает разность давлений над крылом и под ним В результате часть воздуха на концах крыльев перетекает из зоны большего давления в зону меньшего давления

Угол, на который отклоняется поток воздуха, обтекающий крыло со скоростью V, наведенной вертикальной скоростью U, называется углом скоса потока. Величина его зависит от значения вертикальной скорости, индуктированной вихревым жгутом, и скорости набегающего потока V

Поэтому благодаря скосу потока истинный угол атаки ист крыла в каждом его сечении будет отличаться от геометрического или кажущегося угла атаки каж на величину Как известно, подъемная сила крыла ^ Y всегда перпендикулярна набегающему потоку, его направлению. Поэтому вектор подъемной силы крыла отклоняется на угол и перпендикулярен к направлению воздушного потока V. Подъемной силой будет не вся сила ^ Y" а ее составляющая Y, направленная перпендикулярно набегающему потоку

Ввиду малости величины считаем равна Другая составляющая сила Y" будет Эта составляющая направлена по потоку и называется индуктивным сопротивлением (Рис. представлен выше). Чтобы найти величину индуктивного сопротивления, необходимо вычислить скорость ^ U и угол скоса потока. Зависимость угла скоса потока от удлинения крыла, коэффициента подъемной силы Су и формы крыла в плане выражается формулой где А - коэффициент, учитывающий форму крыла в плане. Для крыльев самолетов коэффициент А равен где эф - удлинение крыла без учета площади фюзеляжа, занимающей часть крыла; - величина, зависящая от формы крыла в плане.

где Cxi -коэффициент индуктивного сопротивления. Он определяется по формуле Из формулы видно, что Сх прямо пропорционален коэффициенту подъемной силы и обратно пропорционален удлинению крыла. При угле атаки нулевой подъемной силы о индуктивное сопротивление будет равно нулю. На закритических углах атаки нарушается плавное обтекание профиля крыла и, следовательно, формула определения Cx 1 не приемлема для определения его величины. Так как величина Сх обратно пропорциональна удлинению крыла, поэтому самолеты, предназначенные для полетов на большие расстояния, имеют большое удлинение крыла: =14… 15.

АЭРОДИНАМИЧЕСКОЕ КАЧЕСТВО КРЫЛА Аэродинамическим качеством крыла называется отношение подъемной силы к силе лобового сопротивления крыла на данном угле атаки где Y - подъемная сила, кг; Q - сила лобового сопротивления, кг. Подставив в формулу значения Y и Q, получим Чем больше аэродинамическое качество крыла, тем оно совершеннее. Величина качества для современных самолетов может достигать 14 -15, а для планеров 45 -50. Это означает, что крыло самолета может создавать подъемную силу, превышающую лобовое сопротивление в 14 -15 раз, а у планеров даже в 50 раз.

Аэродинамическое качество характеризуется углом Угол между векторами подъемной и полной аэродинамической сил называется углом качества. Чем больше аэродинамическое качество, тем меньше угол качества, и наоборот. Аэродинамическое качество крыла, как видно из формулы зависит от тех же факторов, что и коэффициенты Су и Сх, т. е. от угла атаки, формы профиля, формы крыла в плане, числа М полета и от обработки поверхности. ВЛИЯНИЕ НА АЭРОДИНАМИЧЕСКОЕ КАЧЕСТВО УГЛА АТАКИ С увеличением угла атаки до определенной величины аэродинамическое качество возрастает. При некотором угле атаки качество достигает максимальной величины Кмакс. Этот угол называется наивыгоднейшим углом атаки, наив На угле атаки нулевой подъемной силы о где Су=0 аэродинамическое качество будет. равно нулю. Влияние на аэродинамическое качество формы профиля связано с относительными толщиной и кривизной профиля. При этом большое влияние оказывают форма обводов профиля, форма носка и положение максимальной толщины профиля вдоль хорды Для получения больших значений Кмакс выбираются оптимальные толщина и кривизна профиля, формы обводов и удлинение крыла. Для получения наибольших значений качества наилучшей формой крыла является эллипсовидная с закругленной передней кромкой.

График зависимости аэродинамического качества от угла атаки Образование подсасывающей силы Зависимость аэродинамического качества от угла атаки и толщины профиля Изменение аэродинамического качества крыла в зависимости от числа М

ПОЛЯРА КРЫЛА Для различных расчетов летных характеристик крыла особенно важно знать одновременное изменение Су и Сх в диапазоне летных углов атаки. Для этой цели строится график зависимости коэффициента Су от Сх, называемый полярой. Название «поляра» объясняется тем, что эту кривую можно рассматривать как полярную диаграмму, построенную на координатах коэффициента полной аэродинамической силы СR и, где - угол наклона полной аэродинамической силы R к направлению скорости набегающего потока (при условии, если масштабы Су и Сх взять одинаковыми). Принцип построения поляры крыла Поляра крыла Если из начала координат, совмещенного с центром давления профиля, провести вектор к любой точке на поляре, то он будет представлять собой диагональ прямоугольника, стороны которого соответственно равны Сy и Сх. лобового сопротивления и коэффициента подъемной силы от углов атаки - так называемая поляра крыла.

Поляра строится для вполне определенного крыла с заданными геометрическими размерами и формой профиля. По поляре крыла можно определить ряд характерных углов атаки. Угол нулевой подъемной силы о находится на пересечении поляры с осью Сх. При этом угле атаки коэффициент подъемной силы равен нулю (Сy = 0). Для крыльев современных самолетов обычно о = Угол атаки, на котором Сх имеет наименьшую величину Cх. мин. находится проведением касательной к поляре, параллельной оси Сy. Для современных крыльевых профилей этот угол заключен в диапазоне от 0 до 1°. Наивыгоднейший угол атаки наив. Так как на наивыгоднейшем угле атаки аэродинамическое качество крыла максимальное, то угол между осью Сy и касательной, проведенной из начала координат, т. е. угол качества, на этом угле атаки, согласно формуле (2. 19), будет минимальным. Поэтому для определения наив нужно провести из начала координат касательную к поляре. Точка касания будет соответствовать наив. Для современных крыльев наив лежит в пределах 4 - 6°.

Критический угол атаки крит. Для определения критического угла атаки необходимо провести касательную к поляре, параллельную оси Сх. Точка касания и будет соответствовать крит. Для крыльев современных самолетов крит = 16 -30°. Углы атаки с одинаковым аэродинамическим качеством находятся проведением из начала координат секущей к поляре. В точках пересечения найдем углы атаки (и) при полете, на которых аэродинамическое качество будет одинаково и обязательно меньше Кмакс.

ПОЛЯРА САМОЛЕТА Одной из основных аэродинамических характеристик самолета является поляра самолета. Коэффициент подъемной силы крыла Сy равен коэффициенту подъемной силы всего самолета, а коэффициент лобового сопротивления самолета для каждого угла атаки больше Сх крыла на величину Сх вр Поляру самолета можно получить путем прибавления величины Сх вр к Сх крыла на поляре крыла для соответствующих углов атаки. Поляра самолета будет при этом сдвинута вправо от поляры крыла на величину Сх вр. Поляру самолета строят, используя данные зависимостей Сy=f() и Сх=f(), полученных экспериментально путем продувок моделей в аэродинамических трубах. Углы атаки на поляре самолета проставляются путем переноса по горизонтали углов атаки, размеченных на поляре крыла. Определение аэродинамических характеристик и характерных углов атаки по поляре самолета производится так же, как это делалось на поляре крыла.

Угол атаки нулевой подъемной силы самолета практически не отличается от угла атаки нулевой подъемной силы крыла. Так как на угле подъемная сила равна нулю, то на этом угле атаки возможно только вертикальное движение самолета вниз, называемое отвесным пикированием, или вертикальная горка под углом 90°.

Угол атаки, при котором коэффициент лобового сопротивления имеет минимальную величину находится проведением параллельно оси Сy касательной к поляре. При полете на этом угле атаки будут наименьшие потери на сопротивление. На этом угле атаки (или близком к нему) совершается полет с максимальной скоростью. Наивыгоднейший угол атаки (наив) соответствует наибольшему значению аэродинамического качества самолета. Графически этот угол, так же, как и для крыла, определяется путем проведения касательной к поляре из начала координат. Из графика видно, что наклон касательной к поляре самолета больше, чем касательной к поляре крыла. Вывод: максимальное качество самолета в целом всегда меньше максимального аэродинамического качества отдельно взятого крыла.

Из графика видно, что наивыгоднейший угол атаки самолета больше наивыгоднейшего угла атаки крыла на 2 - 3°. Критический угол атаки самолета (крит) по своей величине не отличается от величины этого же угла для крыла. Выпуск закрылков во взлетное положение (= 15 -25°) позволяет увеличить максимальный коэффициент подъемной силы Сумакс при сравнительно небольшом увеличении коэффициента лобового сопротивления. Это позволяет уменьшить потребную минимальную скорость полета, которая практически определяет скорость отрыва самолета при взлете. Благодаря выпуску закрылков (или щитков) во взлетное положение длина разбега сокращается до 25%.

При выпуске закрылков (или щитков) в посадочное положение (= 45 - 60°) максимальный коэффициент подъемной силы может возрасти до 80%, что резко снижает посадочную скорость и длину пробега. Однако лобовое сопротивление при этом возрастает интенсивнее, чем подъемная сила, поэтому аэродинамическое качество значительно уменьшается. Но Это обстоятельство используется как положительный эксплуатационный фактор - увеличивается крутизна траектории при планировании перед посадкой и, следовательно, самолет становится менее требователен к качеству подходов в створе посадочной полосы. Однако при достижении таких чисел М, при которых сжимаемостью уже нельзя пренебречь (М > 0, 6 - 0, 7) коэффициенты подъемной силы и лобового сопротивления нужно определять с учетом поправки на сжимаемость. где Сусж - коэффициент подъемной силы с учетом сжимаемости; Сунесж - коэффициент подъемной силы несжимаемого потока для того же угла атаки, что и Сусж.

До чисел M = 0, 6 -0, 7 все поляры практически совпадают, но при больших числах ^ М они начинают смещаться вправо и одновременно увеличивают наклон к оси Сх. Смещение поляр вправо (на большие Сх) обусловлено ростом коэффициента профильного сопротивления за счет влияния сжимаемости воздуха, а при дальнейшем увеличении числа (М > 0, 75 - 0, 8) за счет появления волнового сопротивления. Увеличение наклона поляр объясняется ростом коэффициента индуктивного сопротивления, так как при одном и том же угле атаки в дозвуковом потоке сжимаемого газа увеличится пропорционально Аэродинамическое качество самолета с момента заметного проявления эффекта сжимаемости начинает уменьшаться.


Вопросы для повторения: Какие опыты поставили, чтобы показать роль сил поверхностного натяжения в дыхании? Почему постоянный синтез сурфоктантов помогает нам дышать, и что происходит, когда он прекращается? Почему аквалангисты должны дышать под водой сжатым воздухом? Почему при спуске на большие глубины водолазы не могут использовать сжатый воздух, а должны приготовлять специальные дыхательные смеси? Что такое кессонная болезнь и как её избежать?










Сила сопротивления воздушному потоку Сила сопротивления пропорциональна числу молекул воздуха, которых останавливает крыло, их массе и скорости F сопр поперечное (лобовое) сечение крыла в направлении движения где - плотность воздуха, V - скорость самолёта, а S - площадь его крыла угол атаки


Сила сопротивления изменение импульса воздуха Подъёмная сила воздушного потока mV0mV0 mV1mV1 Подъёмная сила пропорциональна числу молекул воздуха, которых поворачивает крыло, их массе и скорости где - плотность воздуха, V - скорость самолёта, а S - площадь его крыла


















Зависимость скорости самолёта от его массы При неизменной мощности двигателя, чем больше масса самолёта, тем медленнее он летит При неизменной скорости и аэродинамических качествах, т.е. С под /С сопр = const, грузоподъёмность пропорциональна площади крыльев


Есть ли связь между посещаемостью и успеваемостью? посещаемость, % результаты зачёта Как количественно определить, тесно ли связано изменение двух величин?


Посещаемость, % результаты зачёта Как количественно определить, тесно ли связано изменение двух величин? Есть ли связь между посещаемостью и успеваемостью?


Вычисляем коэффициент корреляции (связи), CORR, между успеваемостью и посещаемостью посещаемость, % результаты зачёта средняя посещаемость АБ ВГ средняя успеваемость CORR(10 «Б») = 0

Скалистовская общеобразовательная школа I –III ступени

Элективный курс физики в 10 классе Исследовательский проект на тему

«Изучение зависимости аэродинамических качеств крыла от его формы».

г. Бахчисарай.

Научный руководитель:

учитель физики Джемилев Ремзи Недимович

Работу выполнил: Ерофеев Сергей

ученик 10 класса

(Скалистовская общеобразовательная

школа I - III ступеней

Бахчисарайского районного совета

Автономной Республики Крым)

Актуализация темы.

Одна из основных проблем при конструировании новых самолётов - выбор оптимальной формы крыла и его параметров (геометрических, аэродинамических, прочностных и т. п.). Авиаконструкторам пришлось столкнуться с разными неожиданными эффектами, возникающими при больших скоростях. Отсюда и необычные порой формы крыльев современных самолетов. Крылья « отгибаются» назад, придавая им вид стрелы; или наоборот крылья приобретают форму обратной стреловидности.

Объектом нашего исследования является раздел физики аэродинамика – это раздел аэромеханики, в котором изучаются законы движения воздуха и других газов и их силовое взаимодействие с движущимися твердыми телами.

Предметом исследования является определение величины подъемной силы крыла при определенной

скорости движения воздушного потока относительно крыла. Одна из основных причин влияющих на форму крыла является совершенно иное поведение воздуха при больших скоростях.

Аэродинамика – наука экспериментальная. Формул, позволяющих абсолютно точно описать процесс взаимодействия твердого тела с набегающим потоком воздуха, пока нет. Однако было замечено, что тела, имеющие одинаковую форму (при разных линейных размерах), взаимодействуют с воздушным потоком одинаково. Поэтому на уроке мы будем проводить исследования аэродинамических параметров трех видов крыла с одинаковым поперечным сечением, но разной формы: прямоугольной, стреловидной и обратной стреловидностью при обтекании их воздухом.

Наблюдения и опыты которые мы проведем помогут нам лучше понять некоторые новые стороны физических явлений, которые наблюдаются при полете самолета.

Актуальность нашей темы заключается в популяризации авиации, авиационной техники.

История исследования.

Ощущаем ли мы воздух вокруг себя? Если мы не шевелимся, то практически его не чувствуем. Когда же, к примеру мы мчимся в автомобиле с открытыми окнами, то бьющий в лицо ветер напоминает пружинящую струю жидкости. Значит воздух обладает упругостью и плотностью и может создавать давление. Нашему далекому предку ничего не было известно об опытах, доказывающих существование атмосферного давления, но он интуитивно понимал, что если очень сильно помахать руками то, глядишь удастся оттолкнуться от воздуха, как птице. Мечта о полете сопровождала человека, сколько он себя помнит. Об этом говорит известнейшая легенда об Икаре. Многие изобретатели пытались взлететь. В разных странах и в разные времена были многочисленные попытки покорения воздушной стихии. Великий итальянский художник Леонардо да Винчи набросал проект летательного аппарата, работающего только на мускульной силе человека. Однако природа не позволила человеку летать подобно птице. Но она наградила его разумом, который помог изобрести аппарат тяжелее воздуха, способный оторваться от земли и поднимать не только себя, но и человека с грузами.

Как же удалось ему создать такую машину? Что держит самолет в воздухе? Ответ очевиден – крылья. А что держит крылья? Самолет устремляется вперед, разгоняется, возникает подъемная сила. При достаточной скорости она оторвет наш летательный аппарат от земли и будет удерживать самолет во время полета.

Первые теоретические исследования и важные результаты были проведены на рубеже XIX-XX веков русскими учёными Н. Е. Жуковским и С. А. Чаплыгиным.

Николай Егорович Жуковский (1847 -1921) - русский ученый, основоположник современной аэродинамики. Построил в начале века аэродинамическую трубу, разработал теорию крыла самолета. В 1890 г. Жуковским бала опубликована его первая работа в области авиации « К теории летания».

Сергей Алексеевич Чаплыгин (1869 - 1942) советский ученный в области теоретической механики, один из основоположников современной гидроаэродинамики. В своей работе «О газовых струях», дал теорию полетов с высокими скоростями, послужившую теоретической основой современной высокоскоростной авиации.

«Человек не имеет крыльев и по отношению веса своего тела к весу мускулов он в 72 раза слабее птицы…. Но я думаю, что он полетит, опираясь не на силу своих мускулов, а на силу своего разума.»

Н.Е. Жуковский

Основы аэродинамики. Основные понятия.

Аэродинамическая труба - установка, создающая поток воздуха для экспериментального изучения обтекания тел потоками воздуха.

Опыты в аэродинамической трубе проводят на основе принципа обратимости движения – движение тела в воздухе можно заменить

движением газа относительно неподвижного тела.

Крыло самолета - важнейшая часть самолета, источник подъемной силы, делающей возможным полет самолета. У разных самолетов неодинаковые крылья, которые отличаются размерами, формой, положением относительно фюзеляжа.

Размах крыла - это расстояние между концами крыла по прямой линии.

Площадь крыла S – это площадь ограниченная контурами крыла. Площадь стреловидного крыла вычисляют как площади двух трапеций.

S = 2 · · = bср· ɭ [ м2 ] (1)

Полная аэродинамическая сила – это сила R, с которой набегающий

воздушный поток воздействует на твердое тело. Разложив эту силу на вертикальную Fy и горизонтальную Fx компоненты (рис.1), мы получим подъемную силу крыла и силу его лобового сопротивления соответственно.

Описание эксперимента.

Для повышения наглядности демонстраций и количественного анализа проводимых экспериментов мы будем использовать измерительный прибор - определения численного значения подъемной силы крыла. Измерительный прибор состоит из металлической рамы на которой укреплена стрелка с неравноплечевым рычагом. Направляя воздушный поток на модель крыла происходит нарушении равновесия рычага стрелка двигается по шкале указывая на величину угла отклонения крыла от горизонтали.

Модели крыла изготовлены из пенопласта размером 140 ͯ 50 мм. Крылья современных самолетов по форме могут быть прямоугольные, стреловидные, обратной стреловидности

Модель для измерения величины подъемной силы крыла включает в себя следующие основные блоки (рис.4.) :

Аэродинамическую трубу;

Измерительный прибор;

Неподвижную платформу на которой закреплены вышеперечисленные устройства.

Проведение эксперимента.

Модель работает следующим образом:

Для опыта модель крыла крепят к рычагу и устанавливают на расстоянии 20-25 см от аэродинамической трубы. Направляют воздушный поток на модель крыла и наблюдают, как оно поднимается вверх. Меняем форму крыла. Снова приводим рычаг в равновесие, чтобы модель заняла исходное положение, и определяют величину подъемной силы, при той же скорости воздушного потока.

Если установить пластину вдоль потока (угол атаки нуль), то обтекание будет симметричным. В этом случае поток воздуха пластиной не отклоняется и подъемная сила Y равна нулю. Сопротивление X минимально, но не нуль. Оно будет создаваться силами трения молекул воздуха о поверхность пластины. Полная аэродинамическая сила R минимальна и совпадает с силой сопротивления X.

По мере постепенного увеличения угла атаки и увеличения скоса потока подъемная сила увеличивается. Очевидно, что сопротивление тоже растет. Здесь необходимо отметить, что на малых углах атаки подъемная сила растет значительно быстрее, чем лобовое сопротивление.

Прямоугольное крыло.

  • Масса крыла m ≈ 0,01 кг;
  • угол отклонения крыла α = 130, g ≈ 9,8 Н/кг.
  • Площадь крыла S = 0,1· 0,027 = 0,0027 м2

    Подъемная сила крыла Rу = = 0,438 Н

    Лобовое сопротивление Rх = = 0,101 Н

    К = Fу/Fх =0,438/0,101 = 4,34

    Чем больше аэродинамическое качество крыла, тем оно совершеннее.

  • По мере увеличения угла атаки воздушному потоку становится все труднее обтекать пластину. Подъемная сила хотя и продолжает увеличиваться, но медленнее, чем раньше. А вот сопротивление растет все быстрее и быстрее, постепенно обгоняя рост подъемной силы. В результате полная аэродинамическая сила R начинает отклоняется назад. Картина резко меняется.
  • Воздушные струйки оказываются не в состоянии плавно обтекать верхнюю поверхность пластины. За пластиной образуется мощный вихрь. Подъемная сила резко падает, а сопротивление увеличивается. Это явление в аэродинамике называют СРЫВ ПОТОКА. «Сорванное» крыло перестает быть крылом. Оно перестает лететь и начинает падать.

    В нашем опыте уже при угле отклонения крыла α = 600 и более происходит срыв крыла оно не летит, g ≈9,8 Н/кг

    Подъемная сила крыла Ry = = 0,113 Н

    Лобовое сопротивление Rх = = 0,196 Н

    Аэродинамическое качество крыла К = 0,113/0,196 = 0,58

Стреловидное крыло.

Масса крыла m ≈ 0,01 кг;

угол отклонения крыла α = 200, g ≈ 9,8 Н/кг

Площадь крыла S = 0,028 м2

Подъемная сила крыла Rу = = 0,287 Н

Лобовое сопротивление R х = = 0,104 Н

Аэродинамическое качество крыла

К = Fу/Fх = 0,287/0,104 = 2,76

Крыло с обратной стреловидностью.

Масса крыла m ≈ 0,01 кг;

угол отклонения крыла α = 150, g ≈ 9,8 Н/кг

Площадь крыла S = 0,00265 м2

Подъемная сила крыла Rу = = 0,380 Н

Лобовое сопротивление Rх = =0,102 Н

Аэродинамическое качество крыла

К = Fу/Fх = 0,171/0,119 = 3,73

Анализ эксперимента

При анализе эксперимента и полученных результатов мы отталкивались от тезиса что, чем больше аэродинамическое качество крыла, тем оно лучше.

В первом случае нашего эксперимента наилучшими крыльями оказались крыло прямоугольной формы и крыло обратной стреловидности. Основным достоинством прямого крыла является его высокий коэффициент подъемной силы К = 4,34. Для стреловидного крыла коэффициент подъемной силы равен К = 2,76 и соответственно крыло обратной стреловидности имеет коэффициент подъемной силы равен К = 3,73. Поэтому у нас получилось, что наилучшим крылом оказалось крыло прямоугольной формы и крыло обратной стреловидности.

Повторили свой опыт при большей силы воздушного потока: при этом аэродинамические качества прямого крыла и крыла обратной стреловидности уменьшились К = 2,76 и К = 1,48 довольно резко, а вот аэродинамическое качество стреловидного крыла изменилось незначительно К =2,25.

Анализируя результаты полученные для стреловидного крыла мы заметили, что с увеличением скорости воздушного потока лобовое сопротивление крыла увеличивается довольно медленно сохраняя при этом коэффициент подъемной силы почти неизменным.

В данной работе мы с вами изучали зависимость подъемной силы крыла только от его формы в плане. В реальном полете подъёмная сила крыла зависит и от его площади, профиля, а также от угла атаки, скорости и плотности потока и от целого ряда других факторов.

Чтобы эксперимент был чистым надо придерживаться следующих условий

  • поток воздуха удерживали постоянным;
  • ось крыла и ось аэродинамической трубы совпадали.
  • расстояние от конца трубы до места крепления крыла всегда было одинаковым;
  • П.С. Кудрявцев. И.Я. Конфедератов. История физики и техники. Учебное пособие для студентов педагогических институтов. Государственное учебно - педагогическое издательство Министерства просвещения РСФСР. Москва 1960 г.
  • Физика. Я познаю мир. Детская энциклопедия. Москва. АСТ. 2000 г.
  • В.Б. Байдаков, А.С. Клумов. Аэродинамика и динамика полета летательных аппаратов. Москва. «Машиностроение»,1979г.
  • Большая советская энциклопедия. 13. Издание третье. Москва.« Советская энциклопедия» ,1978 г.

Рассмотрим теперь обтекание потоком воздуха крыла самолета. Опыт показывает, что, когда крыло помещено в поток воздуха, вблизи острой задней кромки крыла возникают вихри, вращающиеся в случае, изображенном на рис. 345, против часовой стрелки. Вихри эти растут, отрываются от крыла и уносятся потоком. Остальная масса воздуха вблизи крыла получает при этом противоположное вращение (по часовой стрелке), образуя циркуляцию около крыла (рис. 346). Накладываясь на общий поток, циркуляция обусловливает распределение линий тока, изображенное на рис. 347.

Рис. 345. У острого края профиля крыла образуется вихрь

Рис. 346. При образовании вихря возникает циркуляция воздуха вокруг крыла

Рис. 347. Вихрь унесен потоком, а линии тока плавно обтекают профиль; они сгущены над крылом и разрежены под крылом

Мы получили для профиля крыла такую же картину обтекания, как и для вращающегося цилиндра. И здесь на общий поток воздуха наложено вращение вокруг крыла - циркуляция. Только, в отличие от вращающегося цилиндра, здесь циркуляция возникает не в результате вращения тела, а благодаря возникновению вихрей вблизи острого края крыла. Циркуляция ускоряет движение воздуха над крылом и замедляет его под крылом. Вследствие этого над крылом давление понижается, а под крылом повышается. Равнодействующая всех сил, действующих со стороны потока на крыло (включая силы трения), направлена вверх и немного отклонена назад (рис. 341). Ее составляющая, перпендикулярная к потоку, представляет собой подъемную силу а составляющая в направлении потока - силу лобового сопротивления . Чем больше скорость набегающего потока, тем больше и подъемная сила и сила лобового сопротивления. Эти силы зависят, кроме того, и от формы профиля крыла, и от угла, под которым поток набегает на крыло (угол атаки), а также от плотности набегающего потока: чем больше плотность, тем больше и эти силы. Профиль крыла выбирают так, чтобы оно давало возможно большую подъемную силу при возможно меньшем лобовом сопротивлении. Теория возникновения подъемной силы крыла при обтекании потоком воздуха была дана основоположником теории авиации, основателем русской школы аэро - и гидродинамики Николаем Егоровичем Жуковским (1847-1921).

Теперь мы можем объяснить, как летает самолет. Воздушный винт самолета, вращаемый двигателем, или реакция струи реактивного двигателя, сообщает самолету такую скорость, что подъемная сила крыла достигает веса самолета и даже превосходит его. Тогда самолет взлетает. При равномерном прямолинейном полете сумма всех сил, действующих на самолет, равна нулю, как и должно быть согласно первому закону Ньютона. На рис. 348 изображены силы, действующие на самолет при горизонтальном полете с постоянной скоростью. Сила тяги двигателя равна по модулю и противоположна по направлению силе лобового сопротивления воздуха для всего самолета, а сила тяжести равна по модулю и противоположна по направлению подъемной силе .

Рис. 348. Силы, действующие на самолет при горизонтальном равномерном полете

Самолеты, рассчитанные на полет с различной скоростью, имеют различные размеры крыльев. Медленно летящие транспортные самолеты должны иметь большую площадь крыльев, так как при малой скорости подъемная сила, приходящаяся на единицу площади крыла, невелика. Скоростные же самолеты получают достаточную подъемную силу и от крыльев малой площади. Так как подъемная сила крыла уменьшается при уменьшении плотности воздуха, то для полета на большой высоте самолет должен двигаться с большей скоростью, чем вблизи земли.

Подъемная сила возникает и в том случае, когда крыло движется в воде. Это дает возможность строить суда, движущиеся на подводных крыльях. Корпус таких судов во время движения выходит из воды (рис. 349). Это уменьшает сопротивление воды движению судна и позволяет достичь большой скорости хода. Так как плотность воды во много раз больше, чем плотность воздуха, то можно получить достаточную подъемную силу подводного крыла при сравнительно малой его площади и умеренной скорости.

Рис. 349. Судно на подводных крыльях

Назначение самолетного винта - это придание самолету большой скорости, при которой крыло создает подъемную силу, уравновешивающую вес самолета. С этой целью винт самолета укрепляют на горизонтальной оси. Существует тип летательных аппаратов тяжелее воздуха, для которого крылья не нужны. Это - вертолеты (рис. 350).

Рис. 350. Схема вертолета

В вертолетах ось воздушного винта расположена вертикально и винт создает тягу, направленную вверх, которая и уравновешивает вес вертолета, заменяя подъемную силу крыла. Винт вертолета создает вертикальную тягу независимо от того, движется вертолет или нет. Поэтому при работе воздушных винтов вертолет может неподвижно висеть в воздухе или подниматься по вертикали. Для горизонтального перемещения вертолета необходимо создать тягу, направленную горизонтально. Для этого не нужно устанавливать специальный винт с горизонтальной осью, а достаточно только несколько изменить наклон лопастей вертикального винта, что выполняется при помощи специального механизма во втулке винта.

Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.

Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"

Подобные документы

    Расчёт и построение поляр дозвукового пассажирского самолета. Определение минимального и макимального коэффициентов лобового сопротивления крыла и фюзеляжа. Сводка вредных сопротивлений самолета. Построение поляр и кривой коэффициента подъемной силы.

    курсовая работа , добавлен 01.03.2015

    Конструктивные и аэродинамические особенности самолета. Аэродинамические силы профиля крыла самолета Ту-154. Влияние полетной массы на летные характеристики. Порядок выполнения взлета и снижения самолета. Определение моментов от газодинамических рулей.

    курсовая работа , добавлен 01.12.2013

    Обтекание тела воздушным потоком. Крыло самолета, геометрические характеристики, средняя аэродинамическая хорда, лобовое сопротивление, аэродинамическое качество. Поляра самолета. Центр давления крыла и изменение его положения в зависимости от угла атаки.

    курсовая работа , добавлен 23.09.2013

    Исследование взлетно-посадочных характеристик самолета: определение размеров крыла и углов стреловидности; расчет критического числа Маха, аэродинамического коэффициента лобового сопротивления, подъемной силы. Построение взлётной и посадочной поляр.

    курсовая работа , добавлен 24.10.2012

    Расчет прочности крыла большого удлинения транспортного самолета: определение геометрических параметров и весовых данных крыла. Построение эпюры поперечных сил и моментов по длине крыла. Проектировочный и проверочный расчет поперечного сечения крыла.

    курсовая работа , добавлен 14.06.2010

    Летные характеристики самолета Як-40 для варианта нагружения. Геометрические характеристики силовых элементов крыла. Преобразование сложного в плане крыла в прямоугольное. Расчет нагружающих сил и нагрузок. Определение напряжений в сечениях крыла.

    курсовая работа , добавлен 23.04.2012

    Параметры самолёта с прямоугольным крылом. Определение углов скоса в центральном и концевом сечениях крыла, при П–образной модели вихревой системы. Расчет максимального перепада давления на обшивке крыла под действием полного давления набегающего потока.

    контрольная работа , добавлен 24.03.2019