घर / उपकरण / विभेदक का उपयोग करके द्विघात समीकरणों को हल करना। द्विघातीय समीकरण। भेदभाव करने वाला। हल, उदाहरण द्विघात समीकरणों का हल

विभेदक का उपयोग करके द्विघात समीकरणों को हल करना। द्विघातीय समीकरण। भेदभाव करने वाला। हल, उदाहरण द्विघात समीकरणों का हल

द्विघातीय समीकरण। भेदभाव करने वाला। समाधान, उदाहरण।

ध्यान!
अतिरिक्त हैं
विशेष धारा 555 में सामग्री।
उन लोगों के लिए जो दृढ़ता से "बहुत नहीं ..."
और उन लोगों के लिए जो "बहुत ज्यादा...")

द्विघात समीकरणों के प्रकार

द्विघात समीकरण क्या है? यह किस तरह का दिखता है? अवधि में द्विघात समीकरणकीवर्ड है "वर्ग"।इसका मतलब है कि समीकरण में आवश्यक रूप सेएक x वर्ग होना चाहिए। इसके अलावा, समीकरण में (या नहीं भी हो सकता है!) बस x (पहली डिग्री तक) और सिर्फ एक संख्या (स्वतंत्र सदस्य)।और दो से अधिक डिग्री में x नहीं होना चाहिए।

गणितीय शब्दों में, द्विघात समीकरण रूप का एक समीकरण है:

यहां ए, बी और सी- कुछ नंबर। बी और सी- बिल्कुल कोई, लेकिन - शून्य के अलावा कुछ भी। उदाहरण के लिए:

यहां =1; बी = 3; सी = -4

यहां =2; बी = -0,5; सी = 2,2

यहां =-3; बी = 6; सी = -18

खैर, आप विचार समझ गए...

इन द्विघात समीकरणों में, बाईं ओर है पूरा स्थिरसदस्य। गुणांक के साथ x चुकता ए,गुणांक के साथ पहली शक्ति के लिए x बीऔर मुक्त सदस्य

ऐसे द्विघात समीकरण कहलाते हैं पूर्ण।

और अगर बी= 0, हमें क्या मिलेगा? हमारे पास है एक्स पहली डिग्री में गायब हो जाएगा।यह शून्य से गुणा करने पर होता है।) यह पता चलता है, उदाहरण के लिए:

5x 2 -25 = 0,

2x 2 -6x = 0,

-एक्स 2 +4x=0

आदि। और यदि दोनों गुणांक बीऔर सीशून्य के बराबर हैं, तो यह और भी आसान है:

2x 2 \u003d 0,

-0.3x 2 \u003d 0

ऐसे समीकरण, जिनमें कुछ छूट जाता है, कहलाते हैं अपूर्ण द्विघात समीकरण।जो काफी तार्किक है।) कृपया ध्यान दें कि x वर्ग सभी समीकरणों में मौजूद है।

वैसे क्यों शून्य नहीं हो सकता? और आप इसके बजाय स्थानापन्न करें शून्य।) वर्ग में X गायब हो जाएगा! समीकरण रैखिक हो जाएगा। और यह अलग तरह से किया जाता है ...

यह सभी मुख्य प्रकार के द्विघात समीकरण हैं। पूर्ण और अपूर्ण।

द्विघात समीकरणों का हल।

पूर्ण द्विघात समीकरणों का हल।

द्विघात समीकरणों को हल करना आसान है। सूत्रों और स्पष्ट सरल नियमों के अनुसार। पहले चरण में, दिए गए समीकरण को मानक रूप में लाना आवश्यक है, अर्थात। देखने के लिए:

यदि इस रूप में आपको पहले से ही समीकरण दिया गया है, तो आपको पहले चरण को करने की आवश्यकता नहीं है।) मुख्य बात यह है कि सभी गुणांक को सही ढंग से निर्धारित करना है, , बीऔर सी.

द्विघात समीकरण के मूल ज्ञात करने का सूत्र इस प्रकार है:

मूल चिह्न के नीचे के व्यंजक को कहते हैं विभेदक. लेकिन उसके बारे में नीचे। जैसा कि आप देख सकते हैं, x ज्ञात करने के लिए हम उपयोग करते हैं केवल ए, बी और सी. वे। द्विघात समीकरण से गुणांक। बस मूल्यों को ध्यान से बदलें ए, बी और सीइस सूत्र और गिनती में। विकल्प अपने संकेतों के साथ! उदाहरण के लिए, समीकरण में:

=1; बी = 3; सी= -4। यहाँ हम लिखते हैं:

उदाहरण लगभग हल हो गया:

यही उत्तर है।

सब कुछ बहुत सरल है। और आपको क्या लगता है, आप गलत नहीं हो सकते? अच्छा, हाँ, कैसे...

सबसे आम गलतियाँ मूल्यों के संकेतों के साथ भ्रम हैं ए, बी और सी. या बल्कि, उनके संकेतों के साथ नहीं (जहां भ्रमित होना है?), लेकिन जड़ों की गणना के लिए सूत्र में नकारात्मक मूल्यों के प्रतिस्थापन के साथ। यहाँ बचाता है विस्तृत रिकॉर्डविशिष्ट संख्याओं के साथ सूत्र। यदि गणना में कोई समस्या है, इसलिए यह कर!

मान लीजिए कि हमें निम्नलिखित उदाहरण को हल करने की आवश्यकता है:

यहां = -6; बी = -5; सी = -1

मान लीजिए कि आप जानते हैं कि आपको शायद ही पहली बार उत्तर मिलते हैं।

खैर, आलसी मत बनो। एक अतिरिक्त लाइन लिखने में 30 सेकंड का समय लगेगा और त्रुटियों की संख्या तेजी से गिरेगा. इसलिए हम सभी कोष्ठकों और चिह्नों के साथ विस्तार से लिखते हैं:

इतनी सावधानी से पेंट करना अविश्वसनीय रूप से कठिन लगता है। लेकिन लगता ही है। इसे अजमाएं। अच्छा, या चुनें। कौन सा बेहतर है, तेज, या सही? इसके अलावा, मैं तुम्हें खुश कर दूंगा। थोड़ी देर बाद, सब कुछ इतनी सावधानी से पेंट करने की आवश्यकता नहीं होगी। यह सिर्फ सही निकलेगा। खासकर यदि आप व्यावहारिक तकनीकों को लागू करते हैं, जिनका वर्णन नीचे किया गया है। Minuses के एक समूह के साथ यह बुरा उदाहरण आसानी से और त्रुटियों के बिना हल किया जाएगा!

लेकिन, अक्सर, द्विघात समीकरण थोड़े अलग दिखते हैं। उदाहरण के लिए, इस तरह:

क्या आप जानते हैं?) हाँ! ये है अपूर्ण द्विघात समीकरण.

अपूर्ण द्विघात समीकरणों का हल।

उन्हें सामान्य सूत्र द्वारा भी हल किया जा सकता है। आपको बस सही ढंग से यह पता लगाने की जरूरत है कि यहां क्या बराबर है ए, बी और सी.

समझना? पहले उदाहरण में ए = 1; बी = -4;सी? यह बिल्कुल मौजूद नहीं है! अच्छा, हाँ, यह सही है। गणित में, इसका अर्थ है कि सी = 0 ! बस इतना ही। सूत्र में के स्थान पर शून्य रखिए सी,और सब कुछ हमारे लिए काम करेगा। इसी तरह दूसरे उदाहरण के साथ। केवल शून्य हमारे यहाँ नहीं है साथ, ए बी !

लेकिन अधूरे द्विघात समीकरणों को बहुत आसानी से हल किया जा सकता है। बिना किसी सूत्र के। पहले अपूर्ण समीकरण पर विचार करें। बाईं ओर क्या किया जा सकता है? आप एक्स को कोष्ठक से बाहर निकाल सकते हैं! आइए इसे बाहर निकालें।

और इससे क्या? और तथ्य यह है कि उत्पाद शून्य के बराबर है, और केवल अगर कोई भी कारक शून्य के बराबर है! विश्वास मत करो? खैर, फिर दो गैर-शून्य संख्याएँ लेकर आएँ, जिन्हें गुणा करने पर शून्य मिलेगा!
काम नहीं करता? कुछ...
इसलिए, हम विश्वास के साथ लिख सकते हैं: एक्स 1 = 0, एक्स 2 = 4.

हर चीज़। ये हमारे समीकरण की जड़ें होंगी। दोनों फिट। उनमें से किसी को भी मूल समीकरण में प्रतिस्थापित करने पर, हमें सही पहचान 0 = 0 प्राप्त होती है। जैसा कि आप देख सकते हैं, समाधान सामान्य सूत्र की तुलना में बहुत सरल है। मैं ध्यान देता हूं, वैसे, कौन सा एक्स पहला होगा, और कौन सा दूसरा - यह बिल्कुल उदासीन है। क्रम में लिखना आसान एक्स 1- जो भी कम हो एक्स 2- वह जो अधिक हो।

दूसरा समीकरण भी आसानी से हल किया जा सकता है। हम 9 को दाईं ओर ले जाते हैं। हम पाते हैं:

यह 9 से जड़ निकालने के लिए बनी हुई है, और बस। पाना:

भी दो जड़ें . एक्स 1 = -3, एक्स 2 = 3.

इस प्रकार सभी अपूर्ण द्विघात समीकरणों को हल किया जाता है। या तो एक्स को कोष्ठक से निकालकर, या बस संख्या को दाईं ओर स्थानांतरित करके, उसके बाद रूट निकालकर।
इन तरीकों को भ्रमित करना बेहद मुश्किल है। सिर्फ इसलिए कि पहले मामले में आपको एक्स से रूट निकालना होगा, जो किसी भी तरह समझ से बाहर है, और दूसरे मामले में ब्रैकेट से बाहर निकलने के लिए कुछ भी नहीं है ...

भेदभाव करने वाला। विभेदक सूत्र।

जादुई शब्द विभेदक ! हाई स्कूल के एक दुर्लभ छात्र ने यह शब्द नहीं सुना है! वाक्यांश "विवेककर्ता के माध्यम से निर्णय लें" आश्वस्त और आश्वस्त करने वाला है। क्योंकि विवेचक से तरकीबों का इंतजार करने की जरूरत नहीं है! यह उपयोग करने में आसान और परेशानी मुक्त है।) मैं आपको हल करने के लिए सबसे सामान्य सूत्र की याद दिलाता हूं कोई भीद्विघातीय समीकरण:

मूल चिह्न के नीचे के व्यंजक को विवेचक कहा जाता है। विवेचक को आमतौर पर पत्र द्वारा दर्शाया जाता है डी. विभेदक सूत्र:

डी = बी 2 - 4ac

और इस अभिव्यक्ति में ऐसा क्या खास है? यह एक विशेष नाम के लायक क्यों है? क्या विभेदक का अर्थ?आख़िरकार -बी,या 2एइस सूत्र में वे विशेष रूप से नाम नहीं ... अक्षर और अक्षर।

बात यह है। इस सूत्र का उपयोग करके द्विघात समीकरण को हल करते समय, यह संभव है केवल तीन मामले।

1. विवेचक सकारात्मक है।इसका मतलब है कि आप इससे जड़ निकाल सकते हैं। जड़ को अच्छी तरह से निकाला गया है या बुरी तरह से यह एक और सवाल है। यह महत्वपूर्ण है कि सिद्धांत रूप में क्या निकाला जाता है। तब आपके द्विघात समीकरण के दो मूल हैं। दो अलग समाधान।

2. विवेचक शून्य है।तो आपके पास एक ही उपाय है। चूँकि अंश में शून्य जोड़ने या घटाने से कुछ भी नहीं बदलता है। कड़ाई से बोलते हुए, यह एक जड़ नहीं है, बल्कि दो समान. लेकिन, एक सरलीकृत संस्करण में, इसके बारे में बात करने की प्रथा है एक हल।

3. विवेचक ऋणात्मक है।एक ऋणात्मक संख्या वर्गमूल नहीं लेती है। चलो ठीक है। इसका मतलब है कि कोई समाधान नहीं हैं।

सच कहूं तो सरल उपायद्विघात समीकरण, विभेदक की अवधारणा की विशेष रूप से आवश्यकता नहीं है। हम सूत्र में गुणांकों के मानों को प्रतिस्थापित करते हैं, और हम विचार करते हैं। वहाँ सब कुछ अपने आप निकल जाता है, और दो जड़ें, और एक, और एक भी नहीं। हालाँकि, अधिक जटिल कार्यों को हल करते समय, बिना ज्ञान के अर्थ और विभेदक सूत्रपर्याप्त नहीं। विशेष रूप से - मापदंडों के साथ समीकरणों में। इस तरह के समीकरण जीआईए और एकीकृत राज्य परीक्षा के लिए एरोबेटिक्स हैं!)

इसलिए, द्विघात समीकरणों को कैसे हल करेंआपके द्वारा याद किए गए विवेचक के माध्यम से। या सीखा है, जो बुरा भी नहीं है।) आप सही ढंग से पहचानना जानते हैं ए, बी और सी. क्या आप जानते हैं कैसे ध्यान सेउन्हें मूल सूत्र में प्रतिस्थापित करें और ध्यान सेपरिणाम गिनें। क्या आप समझ गए कि यहाँ मुख्य शब्द है - ध्यान से?

अब उन व्यावहारिक तकनीकों पर ध्यान दें जो त्रुटियों की संख्या को नाटकीय रूप से कम करती हैं। वही जो असावधानी के कारण होते हैं... जिसके लिए यह फिर दर्दनाक और अपमानजनक होता है...

पहला स्वागत . द्विघात समीकरण को मानक रूप में लाने के लिए हल करने से पहले आलसी मत बनो। इसका क्या मतलब है?
मान लीजिए, किसी भी परिवर्तन के बाद, आपको निम्नलिखित समीकरण मिलता है:

जड़ों का सूत्र लिखने में जल्दबाजी न करें! आप लगभग निश्चित रूप से बाधाओं को मिलाएंगे ए, बी और सी।उदाहरण सही ढंग से बनाएँ। पहले, x चुकता, फिर बिना वर्ग के, फिर एक मुक्त सदस्य। ऐशे ही:

और फिर, जल्दी मत करो! x चुकता से पहले का माइनस आपको बहुत परेशान कर सकता है। इसे भूलना आसान है... माइनस से छुटकारा पाएं। कैसे? हाँ, जैसा कि पिछले विषय में पढ़ाया गया था! हमें पूरे समीकरण को -1 से गुणा करना होगा। हम पाते हैं:

और अब आप जड़ों के लिए सूत्र को सुरक्षित रूप से लिख सकते हैं, विवेचक की गणना कर सकते हैं और उदाहरण को पूरा कर सकते हैं। आप ही निर्णय लें। आपको जड़ों 2 और -1 के साथ समाप्त होना चाहिए।

दूसरा स्वागत। अपनी जड़ों की जाँच करें! Vieta के प्रमेय के अनुसार। चिंता मत करो, मैं सब कुछ समझा दूंगा! चेकिंग आखिरी चीजसमीकरण। वे। जिसके द्वारा हमने मूलों का सूत्र लिख दिया। यदि (इस उदाहरण में) गुणांक ए = 1, जड़ों को आसानी से जांचें। उन्हें गुणा करने के लिए पर्याप्त है। आपको एक फ्री टर्म मिलना चाहिए, यानी। हमारे मामले -2 में। ध्यान दें, 2 नहीं, बल्कि -2! स्वतंत्र सदस्य आपके संकेत के साथ . अगर यह काम नहीं करता है, तो इसका मतलब है कि वे पहले ही कहीं गड़बड़ कर चुके हैं। एक त्रुटि की तलाश करें।

यदि यह काम करता है, तो आपको जड़ों को मोड़ना होगा। अंतिम और अंतिम जांच। अनुपात होना चाहिए बीसाथ विलोम संकेत। हमारे मामले में -1+2 = +1। एक गुणांक बी, जो x से पहले है, -1 के बराबर है। तो, सब ठीक है!
यह अफ़सोस की बात है कि यह केवल उन उदाहरणों के लिए इतना सरल है जहाँ x वर्ग शुद्ध है, एक गुणांक के साथ ए = 1.लेकिन कम से कम ऐसे समीकरणों की जाँच करें! कम गलतियाँ होंगी।

रिसेप्शन तीसरा . यदि आपके समीकरण में भिन्नात्मक गुणांक हैं, तो भिन्नों से छुटकारा पाएं! "समीकरणों को कैसे हल करें? पहचान परिवर्तन" पाठ में वर्णित सामान्य हर से समीकरण को गुणा करें। अंशों, त्रुटियों के साथ काम करते समय, किसी कारण से चढ़ना ...

वैसे, मैंने एक बुरे उदाहरण का वादा किया था जिसमें मिनिस के एक समूह को सरल बनाया गया था। आपका स्वागत है! वो रहा वो।

Minuses में भ्रमित न होने के लिए, हम समीकरण को -1 से गुणा करते हैं। हम पाते हैं:

बस इतना ही! निर्णय लेना मजेदार है!

तो चलिए विषय को फिर से समझते हैं।

व्यावहारिक सुझाव:

1. हल करने से पहले, हम द्विघात समीकरण को मानक रूप में लाते हैं, इसे बनाते हैं सही.

2. यदि वर्ग में x के सामने ऋणात्मक गुणांक है, तो हम पूरे समीकरण को -1 से गुणा करके इसे समाप्त करते हैं।

3. यदि गुणांक भिन्नात्मक हैं, तो हम संपूर्ण समीकरण को संगत कारक से गुणा करके भिन्नों को हटा देते हैं।

4. यदि x वर्ग शुद्ध है, तो इसके लिए गुणांक एक के बराबर है, विएटा के प्रमेय का उपयोग करके समाधान को आसानी से जांचा जा सकता है। कर दो!

अब आप तय कर सकते हैं।)

समीकरण हल करें:

8x 2 - 6x + 1 = 0

एक्स 2 + 3x + 8 = 0

एक्स 2 - 4x + 4 = 0

(x+1) 2 + x + 1 = (x+1)(x+2)

उत्तर (अव्यवस्था में):

एक्स 1 = 0
एक्स 2 = 5

एक्स 1.2 =2

एक्स 1 = 2
एक्स 2 \u003d -0.5

एक्स - कोई भी संख्या

एक्स 1 = -3
एक्स 2 = 3

कोई समाधान नहीं

एक्स 1 = 0.25
एक्स 2 \u003d 0.5

क्या सब कुछ ठीक है? बढ़िया! द्विघात समीकरण आपका सिरदर्द नहीं हैं। पहले तीन निकले, लेकिन बाकी नहीं निकले? तब समस्या द्विघात समीकरणों में नहीं है। समस्या समीकरणों के समान परिवर्तनों में है। लिंक पर एक नज़र डालें, यह मददगार है।

काफी काम नहीं करता? या यह बिल्कुल काम नहीं करता है? तब धारा 555 आपकी सहायता करेगी।वहां, इन सभी उदाहरणों को हड्डियों द्वारा क्रमबद्ध किया जाता है। दिखा मुख्यसमाधान में त्रुटियां। बेशक, विभिन्न समीकरणों को हल करने में समान परिवर्तनों के अनुप्रयोग का भी वर्णन किया गया है। बहुत मदद करता है!

अगर आपको यह साइट पसंद है...

वैसे, मेरे पास आपके लिए कुछ और दिलचस्प साइटें हैं।)

आप उदाहरणों को हल करने का अभ्यास कर सकते हैं और अपने स्तर का पता लगा सकते हैं। तत्काल सत्यापन के साथ परीक्षण। सीखना - रुचि के साथ!)

आप कार्यों और डेरिवेटिव से परिचित हो सकते हैं।

कक्षा 8 में द्विघात समीकरणों का अध्ययन किया जाता है, इसलिए यहाँ कुछ भी जटिल नहीं है। उन्हें हल करने की क्षमता जरूरी है।

द्विघात समीकरण ax 2 + bx + c = 0 के रूप का एक समीकरण है, जहां गुणांक a , b और c मनमानी संख्याएं हैं, और a 0।

विशिष्ट समाधान विधियों का अध्ययन करने से पहले, हम ध्यान दें कि सभी द्विघात समीकरणों को तीन वर्गों में विभाजित किया जा सकता है:

  1. कोई जड़ नहीं है;
  2. उनकी ठीक एक जड़ है;
  3. उनकी दो अलग-अलग जड़ें हैं।

यह द्विघात और रैखिक समीकरणों के बीच एक महत्वपूर्ण अंतर है, जहां मूल हमेशा मौजूद होता है और अद्वितीय होता है। कैसे निर्धारित करें कि एक समीकरण की कितनी जड़ें हैं? इसमें एक अद्भुत बात है - विभेदक.

विभेदक

मान लीजिए कि द्विघात समीकरण ax 2 + bx + c = 0 दिया गया है, तो विवेचक केवल संख्या D = b 2 − 4ac है।

इस सूत्र को दिल से जानना चाहिए। यह कहां से आता है यह अब महत्वपूर्ण नहीं है। एक और बात महत्वपूर्ण है: विवेचक के चिह्न से, आप यह निर्धारित कर सकते हैं कि द्विघात समीकरण की कितनी जड़ें हैं। अर्थात्:

  1. अगर डी< 0, корней нет;
  2. यदि D = 0 है, तो ठीक एक मूल है;
  3. यदि D > 0, तो दो मूल होंगे।

कृपया ध्यान दें: विवेचक जड़ों की संख्या को इंगित करता है, न कि उनके सभी संकेतों को, जैसा कि किसी कारण से बहुत से लोग सोचते हैं। उदाहरणों पर एक नज़र डालें और आप खुद ही सब कुछ समझ जाएंगे:

काम। द्विघात समीकरणों की कितनी जड़ें होती हैं:

  1. एक्स 2 - 8x + 12 = 0;
  2. 5x2 + 3x + 7 = 0;
  3. एक्स 2 - 6x + 9 = 0।

हम पहले समीकरण के लिए गुणांक लिखते हैं और विवेचक पाते हैं:
ए = 1, बी = -8, सी = 12;
डी = (−8) 2 - 4 1 12 = 64 - 48 = 16

तो, विवेचक सकारात्मक है, इसलिए समीकरण की दो अलग-अलग जड़ें हैं। हम दूसरे समीकरण का उसी तरह विश्लेषण करते हैं:
ए = 5; बी = 3; सी = 7;
डी \u003d 3 2 - 4 5 7 \u003d 9 - 140 \u003d -131।

विभेदक नकारात्मक है, कोई जड़ नहीं है। अंतिम समीकरण रहता है:
ए = 1; बी = -6; सी = 9;
डी = (-6) 2 - 4 1 9 = 36 - 36 = 0।

विवेचक शून्य के बराबर है - मूल एक होगा।

ध्यान दें कि प्रत्येक समीकरण के लिए गुणांक लिखे गए हैं। हां, यह लंबा है, हां, यह थकाऊ है - लेकिन आप बाधाओं को नहीं मिलाएंगे और मूर्खतापूर्ण गलतियां नहीं करेंगे। अपने लिए चुनें: गति या गुणवत्ता।

वैसे, यदि आप "अपना हाथ भरते हैं", तो थोड़ी देर बाद आपको सभी गुणांक लिखने की आवश्यकता नहीं होगी। आप अपने सिर में ऐसे ऑपरेशन करेंगे। ज्यादातर लोग 50-70 हल समीकरणों के बाद कहीं ऐसा करना शुरू करते हैं - सामान्य तौर पर, इतना नहीं।

द्विघात समीकरण की जड़ें

अब चलिए समाधान की ओर बढ़ते हैं। यदि विभेदक D > 0 है, तो सूत्रों का उपयोग करके जड़ों को पाया जा सकता है:

द्विघात समीकरण के मूल का मूल सूत्र

जब डी = 0, आप इनमें से किसी भी सूत्र का उपयोग कर सकते हैं - आपको वही संख्या मिलती है, जिसका उत्तर होगा। अंत में, यदि डी< 0, корней нет — ничего считать не надо.

  1. एक्स 2 - 2x - 3 = 0;
  2. 15 - 2x - x2 = 0;
  3. x2 + 12x + 36 = 0.

पहला समीकरण:
एक्स 2 - 2x - 3 = 0 ए = 1; बी = -2; सी = -3;
डी = (-2) 2 - 4 1 (-3) = 16।

D > 0 समीकरण के दो मूल हैं। आइए उन्हें ढूंढते हैं:

दूसरा समीकरण:
15 − 2x - x 2 = 0 a = −1; बी = -2; सी = 15;
डी = (-2) 2 - 4 (-1) 15 = 64।

D > 0 समीकरण के दो मूल हैं। आइए उन्हें ढूंढते हैं

\[\begin(align) & ((x)_(1))=\frac(2+\sqrt(64))(2\cdot \left(-1 \right))=-5; \\ & ((x)_(2))=\frac(2-\sqrt(64))(2\cdot \left(-1 \right))=3. \\ \अंत (संरेखित करें)\]

अंत में, तीसरा समीकरण:
एक्स 2 + 12x + 36 = 0 ए = 1; बी = 12; सी = 36;
डी = 12 2 - 4 1 36 = 0।

D = 0 समीकरण का एक मूल है। किसी भी सूत्र का उपयोग किया जा सकता है। उदाहरण के लिए, पहला वाला:

जैसा कि आप उदाहरणों से देख सकते हैं, सब कुछ बहुत सरल है। यदि आप सूत्र जानते हैं और गिनने में सक्षम हैं, तो कोई समस्या नहीं होगी। अक्सर, त्रुटियाँ तब होती हैं जब सूत्र में ऋणात्मक गुणांकों को प्रतिस्थापित किया जाता है। यहां, फिर से, ऊपर वर्णित तकनीक मदद करेगी: सूत्र को शाब्दिक रूप से देखें, प्रत्येक चरण को पेंट करें - और बहुत जल्द गलतियों से छुटकारा पाएं।

अपूर्ण द्विघात समीकरण

ऐसा होता है कि द्विघात समीकरण परिभाषा में दी गई चीज़ों से कुछ अलग है। उदाहरण के लिए:

  1. x2 + 9x = 0;
  2. x2 - 16 = 0.

यह देखना आसान है कि इन समीकरणों में से एक पद गायब है। इस तरह के द्विघात समीकरणों को मानक समीकरणों की तुलना में हल करना और भी आसान है: उन्हें विवेचक की गणना करने की भी आवश्यकता नहीं है। तो चलिए एक नई अवधारणा पेश करते हैं:

समीकरण कुल्हाड़ी 2 + बीएक्स + सी = 0 को अपूर्ण द्विघात समीकरण कहा जाता है यदि बी = 0 या सी = 0, अर्थात। चर x या मुक्त तत्व का गुणांक शून्य के बराबर है।

बेशक, एक बहुत ही कठिन मामला संभव है जब ये दोनों गुणांक शून्य के बराबर हों: b \u003d c \u003d 0. इस मामले में, समीकरण कुल्हाड़ी 2 \u003d 0 का रूप लेता है। जाहिर है, इस तरह के समीकरण में एक एकल होता है जड़: x \u003d 0.

आइए अन्य मामलों पर विचार करें। चलो बी \u003d 0, फिर हमें फॉर्म कुल्हाड़ी 2 + सी \u003d 0 का अधूरा द्विघात समीकरण मिलता है। आइए इसे थोड़ा रूपांतरित करें:

चूंकि अंकगणितीय वर्गमूल केवल एक गैर-ऋणात्मक संख्या से मौजूद होता है, अंतिम समानता केवल तभी समझ में आती है जब (−c / a ) 0. निष्कर्ष:

  1. यदि ax 2 + c = 0 के रूप का अपूर्ण द्विघात समीकरण असमानता (−c / a ) 0 को संतुष्ट करता है, तो दो मूल होंगे। सूत्र ऊपर दिया गया है;
  2. अगर (-सी / ए)< 0, корней нет.

जैसा कि आप देख सकते हैं, विवेचक की आवश्यकता नहीं थी - अपूर्ण द्विघात समीकरणों में कोई जटिल गणना नहीं है। वास्तव में, असमानता (−c / a ) 0 को याद रखना भी आवश्यक नहीं है। यह x 2 के मान को व्यक्त करने और समान चिह्न के दूसरी तरफ देखने के लिए पर्याप्त है। यदि कोई धनात्मक संख्या है, तो दो मूल होंगे। यदि ऋणात्मक है, तो जड़ें बिल्कुल नहीं होंगी।

अब आइए फार्म ax 2 + bx = 0 के समीकरणों पर विचार करें, जिसमें मुक्त तत्व शून्य के बराबर है। यहां सब कुछ सरल है: हमेशा दो जड़ें होंगी। यह बहुपद का गुणनखंड करने के लिए पर्याप्त है:

उभयनिष्ठ गुणनखंड को कोष्ठक से बाहर निकालना

उत्पाद शून्य के बराबर होता है जब कम से कम एक कारक शून्य के बराबर होता है। यहीं से जड़ें निकलती हैं। अंत में, हम इनमें से कई समीकरणों का विश्लेषण करेंगे:

काम। द्विघात समीकरणों को हल करें:

  1. x2 - 7x = 0;
  2. 5x2 + 30 = 0;
  3. 4x2 - 9 = 0.

x 2 - 7x = 0 ⇒ x (x - 7) = 0 x 1 = 0; x2 = -(−7)/1 = 7.

5x2 + 30 = 0 5x2 = -30 ⇒ x2 = -6। कोई जड़ें नहीं हैं, क्योंकि वर्ग एक ऋणात्मक संख्या के बराबर नहीं हो सकता।

4x 2 - 9 = 0 4x 2 = 9 ⇒ x 2 = 9/4 ⇒ x 1 = 3/2 = 1.5; एक्स 2 \u003d -1.5।

इससे पहले कि हम यह सीखें कि ax2+bx+c=0 फॉर्म के द्विघात समीकरण का विभेदक कैसे खोजा जाए और किसी दिए गए समीकरण के मूल कैसे निकाले जाएं, हमें द्विघात समीकरण की परिभाषा को याद रखना होगा। एक समीकरण जो कुल्हाड़ी 2 + बीएक्स + सी = 0 जैसा दिखता है (जहां ए, बी और सी कोई भी संख्या है, यह भी याद रखें कि 0) एक वर्ग है। हम सभी द्विघात समीकरणों को तीन श्रेणियों में विभाजित करेंगे:

  1. जिनकी कोई जड़ नहीं है;
  2. समीकरण में एक मूल है;
  3. दो जड़ें हैं।

समीकरण में जड़ों की संख्या निर्धारित करने के लिए, हमें एक विवेचक की आवश्यकता होती है।

विभेदक का पता कैसे लगाएं। सूत्र

हमें दिया गया है: कुल्हाड़ी 2 + बीएक्स + सी = 0।

विभेदक सूत्र: D = b 2 - 4ac।

विवेचक की जड़ों का पता कैसे लगाएं

जड़ों की संख्या विवेचक के संकेत से निर्धारित होती है:

  1. डी = 0, समीकरण का एक मूल है;
  2. D > 0, समीकरण के दो मूल हैं।

द्विघात समीकरण के मूल निम्न सूत्र द्वारा ज्ञात किए जाते हैं:

X1= -b + D/2а; X2= -b + D/2a.

यदि D = 0 है, तो आप प्रस्तुत किए गए किसी भी सूत्र का सुरक्षित रूप से उपयोग कर सकते हैं। आपको किसी भी तरह से वही जवाब मिलेगा। और अगर यह पता चलता है कि डी> 0, तो आपको कुछ भी गिनने की ज़रूरत नहीं है, क्योंकि समीकरण की कोई जड़ नहीं है।

मुझे कहना होगा कि यदि आप सूत्रों को जानते हैं और सावधानीपूर्वक गणना करते हैं तो विवेचक को खोजना इतना मुश्किल नहीं है। कभी-कभी सूत्र में ऋणात्मक संख्याओं को प्रतिस्थापित करते समय त्रुटियां होती हैं (आपको यह याद रखने की आवश्यकता है कि माइनस गुणा माइनस एक प्लस देता है)। सावधान रहें और सब ठीक हो जाएगा!

मुझे उम्मीद है कि इस लेख का अध्ययन करने के बाद, आप सीखेंगे कि पूर्ण द्विघात समीकरण की जड़ें कैसे खोजें।

विवेचक की सहायता से केवल पूर्ण द्विघात समीकरणों को हल किया जाता है अपूर्ण द्विघात समीकरणों को हल करने के लिए अन्य विधियों का उपयोग किया जाता है, जो आपको "अपूर्ण द्विघात समीकरणों को हल करना" लेख में मिलेगा।

किस द्विघात समीकरण को पूर्ण कहा जाता है? ये है ax 2 + b x + c = 0 . के रूप के समीकरण, जहां गुणांक ए, बी और सी शून्य के बराबर नहीं हैं। तो, पूर्ण द्विघात समीकरण को हल करने के लिए, आपको विवेचक डी की गणना करने की आवश्यकता है।

डी \u003d बी 2 - 4ac।

विवेचक के मूल्य के आधार पर, हम उत्तर लिखेंगे।

यदि विवेचक एक ऋणात्मक संख्या है (D< 0),то корней нет.

यदि विवेचक शून्य है, तो x \u003d (-b) / 2a। जब विवेचक एक धनात्मक संख्या हो (D > 0),

तो x 1 = (-b - D)/2a, और x 2 = (-b + D)/2a.

उदाहरण के लिए। प्रश्न हल करें एक्स 2- 4x + 4 = 0।

डी \u003d 4 2 - 4 4 \u003d 0

एक्स = (- (-4))/2 = 2

उत्तर : 2.

समीकरण 2 को हल करें एक्स 2 + एक्स + 3 = 0।

डी \u003d 1 2 - 4 2 3 \u003d - 23

उत्तर: कोई जड़ नहीं.

समीकरण 2 को हल करें एक्स 2 + 5x - 7 = 0.

डी \u003d 5 2 - 4 2 (-7) \u003d 81

x 1 \u003d (-5 - 81) / (2 2) \u003d (-5 - 9) / 4 \u003d - 3.5

x 2 \u003d (-5 + 81) / (2 2) \u003d (-5 + 9) / 4 \u003d 1

उत्तर:- 3.5; एक.

तो आइए चित्र 1 में योजना द्वारा पूर्ण द्विघात समीकरणों के हल की कल्पना करें।

इन सूत्रों का उपयोग किसी भी पूर्ण द्विघात समीकरण को हल करने के लिए किया जा सकता है। बस आपको सावधान रहने की जरूरत है समीकरण को मानक रूप के बहुपद के रूप में लिखा गया था

एक्स 2 + बीएक्स + सी,अन्यथा आप गलती कर सकते हैं। उदाहरण के लिए, समीकरण x + 3 + 2x 2 = 0 लिखकर, आप गलती से यह तय कर सकते हैं कि

a = 1, b = 3 और c = 2. तब

डी \u003d 3 2 - 4 1 2 \u003d 1 और फिर समीकरण की दो जड़ें हैं। और ये सच नहीं है. (ऊपर उदाहरण 2 समाधान देखें)।

इसलिए, यदि समीकरण को मानक रूप के बहुपद के रूप में नहीं लिखा जाता है, तो पहले पूर्ण द्विघात समीकरण को मानक रूप के बहुपद के रूप में लिखा जाना चाहिए (सबसे बड़े घातांक वाला एकपदी पहले स्थान पर होना चाहिए, अर्थात् एक्स 2 , फिर कम . के साथ बीएक्स, और फिर मुक्त अवधि साथ।

उपरोक्त द्विघात समीकरण और द्विघात समीकरण को दूसरे पद के लिए सम गुणांक के साथ हल करते समय, अन्य सूत्रों का भी उपयोग किया जा सकता है। आइए इन सूत्रों से परिचित हों। यदि दूसरे पद के साथ पूर्ण द्विघात समीकरण में गुणांक सम (b = 2k) है, तो चित्र 2 के आरेख में दिखाए गए सूत्रों का उपयोग करके समीकरण को हल किया जा सकता है।

एक पूर्ण द्विघात समीकरण को कम किया जाता है यदि गुणांक एक्स 2 एकता के बराबर होती है और समीकरण रूप लेता है एक्स 2 + पीएक्स + क्यू = 0. इस तरह के समीकरण को हल करने के लिए दिया जा सकता है, या समीकरण के सभी गुणांक को गुणांक द्वारा विभाजित करके प्राप्त किया जा सकता है पर खड़े एक्स 2 .

चित्रा 3 कम वर्ग के समाधान का एक आरेख दिखाता है
समीकरण इस आलेख में चर्चा किए गए सूत्रों के आवेदन के उदाहरण पर विचार करें।

उदाहरण। प्रश्न हल करें

3एक्स 2 + 6x - 6 = 0.

आइए चित्र 1 में दिखाए गए सूत्रों का उपयोग करके इस समीकरण को हल करें।

डी \u003d 6 2 - 4 3 (- 6) \u003d 36 + 72 \u003d 108

D = √108 = √(36 3) = 6√3

x 1 \u003d (-6 - 6 3) / (2 3) \u003d (6 (-1- (3))) / 6 \u003d -1 - 3

x 2 \u003d (-6 + 6 3) / (2 3) \u003d (6 (-1 + √ (3))) / 6 \u003d -1 + 3

उत्तर: -1 - 3; -1 + 3

आप देख सकते हैं कि इस समीकरण में x पर गुणांक एक सम संख्या है, अर्थात, b \u003d 6 या b \u003d 2k, जहाँ से k \u003d 3. फिर आइए आकृति आरेख में दिखाए गए सूत्रों का उपयोग करके समीकरण को हल करने का प्रयास करें। डी 1 \u003d 3 2 - 3 (- 6 ) = 9 + 18 = 27

(डी 1) = √27 = √(9 3) = 3√3

x 1 \u003d (-3 - 3√3) / 3 \u003d (3 (-1 - √ (3))) / 3 \u003d - 1 - 3

x 2 \u003d (-3 + 3√3) / 3 \u003d (3 (-1 + √ (3))) / 3 \u003d - 1 + 3

उत्तर: -1 - 3; -1 + 3. यह देखते हुए कि इस द्विघात समीकरण के सभी गुणांक 3 से विभाज्य हैं और विभाजित करने पर, हमें घटा हुआ द्विघात समीकरण x 2 + 2x - 2 = 0 प्राप्त होता है।
समीकरण चित्रा 3.

डी 2 \u003d 2 2 - 4 (- 2) \u003d 4 + 8 \u003d 12

(डी 2) = 12 = √(4 3) = 2√3

x 1 \u003d (-2 - 2√3) / 2 \u003d (2 (-1 - √ (3))) / 2 \u003d - 1 - 3

x 2 \u003d (-2 + 2 3) / 2 \u003d (2 (-1 + √ (3))) / 2 \u003d - 1 + 3

उत्तर: -1 - 3; -1 + 3।

जैसा कि आप देख सकते हैं, विभिन्न सूत्रों का उपयोग करके इस समीकरण को हल करने पर, हमें एक ही उत्तर मिला। इसलिए, चित्र 1 के आरेख में दिखाए गए सूत्रों में अच्छी तरह से महारत हासिल करने के बाद, आप हमेशा किसी भी पूर्ण द्विघात समीकरण को हल कर सकते हैं।

साइट, सामग्री की पूर्ण या आंशिक प्रतिलिपि के साथ, स्रोत के लिए एक लिंक आवश्यक है।