Домой / Утепление / Поквартирное отопление в многоквартирном доме. Поквартирное отопление. Индивидуальное отопление квартир Квартира без отопительного оборудования: решение проблемы отопления

Поквартирное отопление в многоквартирном доме. Поквартирное отопление. Индивидуальное отопление квартир Квартира без отопительного оборудования: решение проблемы отопления

Описание:

Системы, применяемые в зданиях повышенной этажности можно разделить на вертикальные (стояковые) и горизонтальные (поквартирная, поэтажная разводка). И те, и другие имеют как ряд преимуществ, так и недостатки. Вертикальную (стояковую) разводку, как правило, применяют в зданиях с единым учетом теплопотребления (только домовой учет).

Опыт проектирования и эксплуатации поквартирных систем отопления высотных жилых зданий

Схема этажного узла подключения поквартирных систем отопления и водоснабжения к вертикальным стоякам

Преимущества поквартирных систем отопления

По сравнению с системами отопления с вертикальными стояками, горизонтальные двухтрубные поквартирные системы отопления с разводкой в полу имеют ряд преимуществ, главным образом с точки зрения службы эксплуатации и владельцев квартир.

Поквартирная система позволяет службе эксплуатации отключить только одну квартиру, например в случае аварии или при необходимости ремонта или замены отопительных приборов. Систему отопления отдельно взятой квартиры можно легко отрегулировать независимо от других квартир. Кроме того, как было отмечено выше, данная схема не критична к проблеме несанкционированного переустройства систем отопления внутри квартир (замене приборов и термостатов). Независимость разводки от других квартир предполагает возможность индивидуального проектирования отопления каждой квартиры в зависимости от пожелания владельца данной квартиры. Поквартирная система отопления при необходимости может быть легко оборудована поквартирными теплосчетчиками, что позволяет перейти на оплату фактически потребленной тепловой энергии по показаниям данных теплосчетчиков. Сама по себе установка теплосчетчиков не относится к энергосберегающим мероприятиям, однако оплата фактически потреб-ленной тепловой энергии является мощным стимулом, заставляющим жителей проводить в квартире такие мероприятия и устанавливать наиболее экономичные параметры микроклимата. Например, при длительном отсутствии можно понизить температуру воздуха в помещениях до некоторого минимального значения посредством термостатов на отопительных приборах. При существующем в настоящее время положении, когда стоимость тепловой энергии входит в состав квартирной платы, владелец квартиры не заинтересован в экономии энергии; если в квартире очень жарко – будет открыта форточка, но никогда не будет закрыт термостат. Применение поквартирных систем отопления, по сравнению с вертикальными, приводит к уменьшению протяженности магистральных труб, которые всегда имеют наибольший диаметр (наиболее дорогие), снижению потерь теплоты в необогреваемых помещениях, где проложены трубопроводы, упрощению поэтажного и посекционного ввода здания в эксплуатацию. Стоимость устройства поквартирной системы отопления, исходя из опыта проектирования ряда объектов, не намного превышает стоимость стандартных схем с вертикальными стояками, однако срок службы поквартирной системы отопления примерно в два раза выше за счет применения труб из термостойких полимерных материалов, таким образом, использование данной схемы экономически целесообразнее.

Особенности применения труб из термостойких полимерных материалов

Нормативные документы декларируют применение в жилых зданиях поквартирных систем отопления. В то же время допускается применение труб из термостойких полимерных материалов. Это могут быть трубы, выполненные из сшитого полиэтилена, полипропилена, стеклопластика, металлополимерные, медные и др. К системам отопления с трубами из таких материалов действующими нормами предъявляются следующие требования:

Системы поквартирного отопления в зданиях следует проектировать двухтрубными, предусматривая при этом установку приборов регулирования, контроля и учета расхода теплоты для каждой квартиры.

Трубопроводы систем отопления следует проектировать из стальных, медных, латунных труб, термостойких труб из полимерных материалов (в том числе металлополимерных и из стеклопластика), разрешенных к применению в строительстве. В комплекте с пластмассовыми трубами следует применять соединительные детали и изделия, соответствующие применяемому типу труб.

Параметры теплоносителя (температура, давление) в системах отопления с трубами из термостойких полимерных материалов не должны превышать предельно допустимые значения, указанные в нормативной документации на их изготовление, но не более 90 °С и 1,0 МПа.

Трубы из полимерных материалов, применяемые в системах отопления совместно с металлическими трубами или с приборами и оборудованием, в том числе в наружных системах теплоснабжения, имеющих ограничения по содержанию растворенного кислорода в теплоносителе, должны иметь антидиффузный слой.

Последнее утверждение, на наш взгляд, довольно спорно, т. к. трудно представить диффузию кислорода внутрь трубы, в которой среда находится под давлением, значительно большим, нежели атмосферное (6–8 атмосфер).

В поквартирных системах отопления рассматриваемых объектов (за исключением здания по ул. Маршала Бирюзова, 32, в котором применены полипропиленовые трубы) использованы трубы из сшитого полиэтилена (PEX). Исходя из опыта проектирования, можно рекомендовать широкое использование таких труб в массовом высотном строительстве.

Технология производства труб из сшитого полиэтилена начала распространяться около тридцати лет назад. К настоящему времени только в Европе уже установлено свыше 5 млрд м труб из РЕХ (все способы сшивки), на них приходится свыше 50 % общего объема рынка полимерных труб для сантехники и горячего водо-снабжения (ГВС). Основные преимущества применения труб из сшитого поли-этилена следующие:

Однородность стенки и прочностные характеристики материала, позволяющие монтировать системы водоснабжения и отопления, включая центральное, в домах повышенной этажности с расчетным сроком службы не менее 50 лет, что допускает применение скрытой разводки и, в свою очередь, соответствует современным эстетическим требованиям.

Способность к воссозданию формы, «молекулярная память», позволяющие восстановить трубопровод после «надлома» (чрезмерного изгиба), а также эксплуатировать систему после размораживания.

Надежность соединения трубы и фитинга.

Разнообразие типов и большая номенклатура фитингов в сочетании с гибкостью и большой длиной намотки бухт, позволяющие минимизировать количество соединений и отходов труб.

Ремонтопригодность системы: скрытая прокладка трубопровода в гофре (канале), в соответствии с требованиями СНиП, позволит, при необходимости, произвести замену поврежденного участка трубы без вскрытия конструкции стены или пола.

Гладкая внутренняя поверхность, не позволяющая твердым частицам «приставать» к стенкам, – трубы «не зарастают», сохраняя внутреннее сечение; коэффициент гидравлического сопротивления уменьшается по сравнению со стальными трубами на 25–30 %.

Можно отметить также, что срок и сложность монтажа и количество занятых при этом людей гораздо ниже, чем при использовании стальных труб, системы очень просты в работе, и для их монтажа не требуются специалисты такой высокой квалификации, как сварщики.

Существует три наиболее распространенных способа изготовления модифицированного полиэтилена: пероксидный (PEX-a), силановый (PEX-b), радиационный (PEX-c).

Первый производитель таких труб, шведская фирма Wirsbo (с 1988 г. – в составе концерна Uponor), вышел на рынок с пероксидной технологией в 1972 г., и к настоящему времени только этой фирмой произведено 1,2 млрд м труб из PEX-a.

Типы труб из сшитого полиэтилена, представленные на отечественном рынке, некоторые производители и краткий перечень объектов в Москве, в системе отопления которых используются данные трубы, представлены в табл. 1.

Таблица 1
Типы труб из сшитого полиэтилена, некоторые производители и примеры объектов
Тип трубы из
сшитого
полиэтилена
Произво-
дитель
Примеры объектов
PEX-a Wirsbo Многоэтажный жилой дом по ул. Флотской, жилые дома по Мичуринскому пр., вл. 6 (14 этажей), ул. Давыдковской, вл. 3 (43 этажа), ул. Новые Черемушки, 22 (18 этажей) и др.
PEX-a Rehau Комплексы «Олимпия», «Золотые Ключи», рассматриваемые в статье объекты
PEX-b Бирпекс Высотное жилое здание «Эдельвейс», жилое здание на Карамышевской наб., ряд объектов «ДОН-Строя», типовые жилые дома в Московской области (Люберцы и т. д.) и др.
PEX-c KAN Жилые комплексы «Корона», «Наука», 11 микрорайон Куркино и др.

Следует отметить, что большую роль в продвижении применения труб из сшитого полиэтилена в нашей стране сыграло создание учебных центров, в которых для проектировщиков устраивались специальные семинары. Такие центры организовали все ведущие производители PEX-труб. Кроме этого, производители предлагают специальное программное обеспечение, как правило, бесплатное, позволяющее провести расчет теплопотерь и быстро подобрать необходимое оборудование и спроектировать систему.

Различие в способах сшивки приводит к различиям и в термомеханических свойствах. В общем случае более высокая плотность сетчатой структуры, повышая прочность, одновременно увеличивает жест-кость материала, делая трубы менее эластичными. Наиболее прочную конструкцию обеспечивает силановый способ изготовления, и в настоящее время можно отметить тенденцию уверенного увеличения на рынке доли труб, изготовленных по технологии PEX-b. Кроме этого, данные трубы отличаются более низкой ценой, поскольку производятся в нашей стране отечественными производителями.

Скорость теплоносителя в трубах систем поквартирного отопления из сшитого полиэтилена принимается, как правило, на уровне значений, соответствующих экономичным гидравлическим сопротивлениям (R = 150–250 Па/м). При этом ориентировочно для подбора диаметров труб в системе поквартирного отопления с горизонтальной разводкой можно принимать значения скорости движения теплоносителя и, соответственно, тепловой нагрузки при разнице температур в подающем и обратном трубопроводе в 20 °С, указанные в табл. 2.

Выше указывалось, что по требованиям СНиП давление теплоносителя в системах отопления с трубами из термостойких полимерных материалов не должно превышать 1,0 МПа. Теоретически такое предельное давление позволяет увеличить высоту зоны. Однако трубы из сшитого полиэтилена не рассчитаны на такое давление (например, трубы из PEX-a при температуре 90 °С рассчитаны на максимальное давление 8,6 атмосфер). По этим соображениям и поквартирные системы отопления зонируются по вертикали, высота зоны при этом, как правило, ограничивается 50–60 метрами. На большинстве объектов, описываемых в данной статье, использованы трубы из PEX-a производства Rehau, однако сейчас рассматриваются возможности применения труб из сшитого полиэтилена, изготовленных и по другим технологиям, в частности, уже построены объекты, на которых применяются трубы из PEX-b, производства корпорации «Бирпекс». Причиной выбора PEX-a для первых объектов стала их гарантированная надежность и долговечность: первые здания с такими трубами были построены еще в 1972 году, и таким образом можно говорить о том, что минимум тридцатилетний срок службы подтвержден опытом реальной эксплуатации. Ограничение применения PEX-труб заключается в ограниченных сочетаниях рабочего давления и температуры.

Хочется обратить внимание проектировщиков на правильный подбор труб с точки зрения допустимых рабочих давлений и температур. Как было отмечено выше, по требованиям СНиП давление и температура теплоносителя в системах отопления с трубами из термостойких полимерных материалов не должны превышать соответственно 1,0 МПа и 90 °С. Допустимое давление в трубе зависит, в том числе, от рабочей температуры и от диаметра трубы: например, производителем могут быть предложены трубы 18 х 2 и 18 х 2,5 мм, и при одной и той же температуре первая труба рассчитана на давление 6 атмосфер, а вторая – на 10 атмосфер.

Очень часто бывает, что уже после разработки проекта системы отопления инвестор принимает решение об увеличении высоты здания на несколько этажей, в результате чего предельное гидростатическое давление может превысить допустимое. Например, трубы из PEX-a при 90 °С рассчитаны на 8,4 ат, что означает максимальную высоту системы 80 м (теоретически высоту системы можно было бы делать больше, поскольку арматура рассчитана на 10 ат, а отопительные приборы на 16–25 ат). Поэтому для надежности, во избежание превышения предельного гидростатического давления, лучше предусмотреть «лишнюю» зону в здании.

Не следует завышать и рабочую температуру. Если здание рассчитано на 95 °С, трубы из PEX применять в системе отопления нельзя, поскольку они рассчитаны максимум на 90 °С (эта же температура указана и в СНиП). Некоторые проектировщики тем не менее мотивируют возможность применения в этом случае PEX-трубы тем, что график теплоснабжения практически никогда не выдерживается, и данная температура (95 °С) никогда достигнута не будет. На наш взгляд, это мнение является ошибочным, и завышения рабочей температуры ни в коем случае нельзя допускать. При применении систем с трубами из сшитого полиэтилена можно рекомендовать придерживаться температурного графика 90–70 °С, 90–65 °С, поскольку дальнейшее понижение температуры приведет к значительному росту поверхности нагревательных приборов, что не приветствуется инвесторами из-за роста стоимости систем.

Из-за различий в температуре теплоносителя, подаваемого в здание от городских тепловых сетей, значительный зарубежный опыт эксплуатации систем с трубами из сшитого полиэтилена может быть использован в нашей стране очень ограниченно. В таких странах, как Голландия, Дания, Германия, теплоноситель подается в здания с температурой 70–75 °С. На рассматриваемых объектах состояние труб из сшитого полиэтилена внимательно контролируется, тем не менее уже накопленный опыт позволяет говорить о том, что и при монтаже, и при эксплуатации систем из PEX-труб в зданиях, подключенных к сетям через ЦТП, проблем возникает значительно меньше, чем у систем с трубами из других материалов.

Еще одно преимущество труб из PEX – возможность ее замоноличивания в бетон. СНиП допускает замоноличивать в бетон неразрывные соединения. Система натяжных фитингов PEX-труб относится как раз к неразрывным соединениям, в отличие от других систем: например, металлопластиковые трубы соединяются посредством накидных гаек, поэтому замоноличивание таких труб является нарушением СНиП.

Опыт применения металлопластиковых труб в системах отопления был признан неудачным, и в настоящее время службой эксплуатации использование этих труб в данных системах запрещено. В процессе эксплуатации было установлено, что в результате старения разрушается клеевой слой и внутренний слой такой трубы «схлопывается», вследствие чего меняется проходное сечение, и система отопления перестает нормально работать. Такое место очень сложно обнаружить, обычно в этом случае неисправность ищется в термостатах, насосах и т. п. Для обнаружения неисправности был разработан специальный способ, при котором в линию ставился водомер, по показаниям которого и удавалось локализовать место «схлопывания». Помимо «схлопывания», в системах отопления из металлопластиковых труб отмечались случаи потери герметичности накидных резьбовых соединений из-за старения резиновых уплотнений.

Одно из значительных преимуществ труб из сшитого полиэтилена по сравнению со стальными – отсутствие резьбовых соединений, что значительно повышает надежность системы. Из-за отсутствия резьбовых соединений значительно уменьшается число очагов механического напряжения, которые появляются в резьбовых соединениях при нагревании и остывании системы. Известны случаи, когда при остановке на лето горячего водоснабжения трубы начинали рваться по резьбовым соединениям. В системах с трубами из сшитого полиэтилена очаги механического напряжения равномерно распределяются по всей длине труб. Здесь играет роль и тот фактор, что данные трубы поставляются в виде бухт, и таким образом длина магистрали безо всяких соединений может достигать значительной величины (например 200 м).

Необходимо отметить, что самих по себе труб совершенно недостаточно для устройства системы отопления или водоснабжения. Система может быть построена только в том случае, если труба обеспечена необходимым ассортиментом фитингов. Не все производители предлагают полный ассортимент фитингов, что вынуждает закупать их на стороне. Это достаточно дорого, и, кроме того, фитинги одного производителя могут не соответствовать трубам другого производителя, несмотря на то, что типоразмеры труб у всех производителей стандартизованы. Использование фитингов и труб, не соответствующих друг другу, приводит к негерметичности соединений, в результате чего в процессе эксплуатации в системе отопления могут появиться протечки.

Срок службы PEX-труб зависит от температуры теплоносителя – чем ниже эта температура, тем больше срок службы трубы. Как уже отмечалось выше, первые такие трубы начали использоваться более 30 лет назад и успешно эксплуатируются в настоящее время. Производители указывают срок службы труб в зависимости от температуры – от 25 до 50 лет. Это минимальные цифры, по нашему мнению, реальный срок службы может быть гораздо выше. Внутренняя поверхность труб из сшитого полиэтилена всегда чистая, в отличие от стальных, там не накапливается ржавчина, окалина и т. д. Старение материала таких труб происходит только в результате воздействия ультрафиолетового излучения. Поскольку на рассматриваемых объектах все трубы защищены от солнечного света – проложены в гофре, в стяжке пола, в пространстве подшивного потолка, в штрабах – старения и разрушения этих труб не происходит. Отопительные приборы подключаются либо посредством специальной розетки, установленной в стене, либо посредством металлической стандартизированной подводки снизу.

Типы систем поквартирного отопления

Разводка труб в системе отопления квартиры может выполняться либо в полу, либо в пространстве подшивного потолка. На рассматриваемых объектах используется, как правило, разводка труб в полу. Поскольку электрическая проводка и различные слаботочные линии могут также располагаться в конструкции пола, необходимо выполнять разводку труб таким образом, чтобы максимально возможно избежать пересечек.

Горизонтальные поквартирные системы отопления бывают лучевые, периметральные и смешанные. В муниципальных жилых домах площадь одной квартиры относительно невелика. С другой стороны, ограждающие конструкции современных зданий отличаются хорошей теплозащитой. Теплопотери квартир невелики. В связи с этим система отопления рассчитана на небольшую тепловую нагрузку, что позволяет использовать трубы малых диаметров. Например, при тепловой нагрузке до 7 кВт достаточно применять трубу диаметром 20 мм. В этом случае квартирная разводка подключается непосредственно к вертикальному стояку в лестнично-лифтовом холле, безо всяких промежуточных шкафов, а внутри квартиры используется периметральная или смешанная разводка.

В жилых домах элитного класса квартиры, как правило, очень большие. Часто используется витражное остекление, устраиваются зимние сады. Несмотря на хорошую теплозащиту, теплопотери квартир достаточно велики. Из-за значительной тепловой нагрузки в подобных квартирах не всегда удается применить даже трубы диаметром 25 мм. В связи с этим в жилых домах элитного класса на вводе в квартиру труб системы отопления устанавливается промежуточный распределительный шкаф, в котором располагается запорная арматура, воздухоотводчики.

Питание квартирных шкафчиков предусматривается от распределительных коллекторов, установленных в выделенных местах лестнично-лифтового узла, обычно это место оборудовано дверями, ключ от которых находится только у службы эксплуатации. В этом же месте, как правило, организуется подключение квартир к системам водоснабжения, а также устанавливаются тепло- и водосчетчики. Сейчас предлагаются модели теплосчетчиков, на вход которых можно подать импульс с водосчетчиков, удешевив таким образом систему диспетчеризации. Даже если тепло- и водосчетчики не устанавливаются, предусматривается место для их размещения, а также для прокладки информационной шины.

Внутри квартиры разводка систем отопления выполняется в полу, как правило, по лучевой схеме, хотя может использоваться и периметральная. Эти две схемы, лучевая и периметральная, в целом равнозначны. Опыт эксплуатации показал, что обе они работают очень хорошо, но все же использование лучевой схемы предпочтительнее, особенно для квартир большой площади. Одно из преимуществ лучевой разводки – использование труб меньшего диаметра. Для большой квартиры при периметральной системе отопления необходима труба диаметром 25 или 32 мм. В этом случае, во-первых, увеличивается подготовка пола. Во-вторых, при этом увеличивается стоимость необходимых материалов (тройник большого диаметра соизмерим по цене с самой трубой). Гораздо выгоднее в таких случаях, применив лучевую разводку, пойти на увеличение числа труб при одновременном уменьшении их диаметра. В этом случае, поскольку вместо шумопоглощающей керамзитовой засыпки используются современные звукопоглощающие материалы небольшой толщины, стяжка пола получается тоньше, что позволяет выиграть в высоте потолков и объеме квартир (в современных квартирах «элитного» класса это обстоятельство является достаточно значимым, поскольку влияет на коммерческую стоимость квартиры). Система с лучевой разводкой проще в монтаже и очень удобна в эксплуатации.

Можно легко сменить отопительный прибор данного луча, не отключая остальные приборы. При каких-либо манипуляциях с отопительным прибором, например при ремонте или в случае аварии, в отличие от периметральной разводки, нет необходимости останавливать отопление всей квартиры, в результате чего квартира в зимнее время выстужается. При лучевой разводке нет необходимости проделывать отверстия в несущих стенах. При перепланировке квартиры стены могут быть перенесены на другое место, и трассы отопления также.

Если в процессе перепланировки или ремонта материал пола крепится по периметру помещения, возможны повреждения труб периметральной разводки (такие случаи были отмечены в процессе эксплуатации здания по ул. Маршала Бирюзова, 32, в котором применялась поквартирная система отопления, выполненная по периметральной схеме из полипропиленовых труб). С другой стороны, если в квартире укладывается паркет, то используется фанерная подготовка, которая крепится большим числом «гвоздей», забиваемых в стяжку. В этом случае лучевая схема более уязвима, чем периметральная. Кроме этого, были отмечены случаи, когда в процессе ремонта при снятых отопительных приборах строительные растворы попадали в трубы, что приводило к их засорению и отключению отопления всей квартиры. Места засоров в таких случаях достаточно сложно локализовать, службой эксплуатации для этих целей был приобретен комплект теплови. Высотные зионного оборудования. Для устранения засора при периметральной разводке требуется отключать всю квартиру. При использовании лучевой разводки в таких случаях отключается только та ветвь, в которой произошел засор, при том что место засора обнаружить очень просто. В упомянутом здании вертикальные стояки системы отопления расположены внутри квартир. Эти стояки были оборудованы балансовыми парами, система была отрегулирована, однако опыт эксплуатации здания показал, что при таком расположении стояков в случае аварии попасть в квартиру для минимизации ущерба зачастую затруднительно. Исходя из этого, на всех новых объектах в настоящее время вертикальные стояки систем отопления и горячего водоснабжения с необходимой запорной арматурой располагаются в лестнично-лифтовом холле, где к ним возможен доступ сотрудников службы эксплуатации.

Отопительные приборы требуют индивидуальных ручных или автоматических воздуховыпускных клапанов, которые также монтируются и на распределителе.

Система горячего водоснабжения с горизонтальной поквартирной разводкой

Помимо системы отопления, по такой схеме (с горизонтальной поквартирной разводкой) может быть организовано и горячее водоснабжение отдельной квартиры. Данная схема успешно реализована, например в высотных жилых комплексах «Воробьевы Горы» и «Триумф-Палас».

В этом случае стояки системы водоснабжения проложены в лестнично-лифтовом холле, откуда обеспечивается ввод в квартиру трубопроводов горячей и холодной воды. Система оснащена счетчиками горячей и холодной воды, которые вместе с фильтрами и регуляторами давления установлены в распределительных шкафах в лестнично-лифтовом холле. Расчет за фактически потребленные ресурсы ведется по показаниям счетчиков. Такое решение позволяет при необходимости отсечь одного из потребителей, проверить давления, отрегулировать потребителей. Локализация поврежденного участка позволяет минимизировать ущерб от аварии, при этом водоснабжение соседних квартир не прекращается.

Во избежание перетока воды из холодной магистрали в горячую, возникающего в результате неправильной эксплуатации некоторых типов сантехнического оборудования, на вводах в квартиры систем горячего и холодного водоснабжения устанавливаются обратные клапаны. Предусматривается установка ограничительных регуляторов давления на 4 бара (подробнее об этом см. статью «Опыт проектирования и эксплуатации инженерных систем новых высотных жилых комплексов Москвы», «АВОК», 2005, № 2, с. 8–18).

Разводка до квартир и в квартире выполняется, как и для системы отопления, из PEX-труб, размещенных, как правило, за подшивным потолком (может быть и в полу). Поскольку разводка от отключающей до водоразборной арматуры выполняется без разрывов, «одной трубой», данная схема отличается очень высокой надежностью, устойчивостью к протечкам. В свою очередь, гладкая внутренняя поверхность трубы из сшитого полиэтилена позволяет избежать «зарастания» трубы даже в случае использования очень жесткой воды. Система водоснабжения также делится на зоны по высоте, и в описываемых системах стояки систем прокладываются параллельно в указанных выше нишах лестнично-лифтового узла, имеют удобный доступ для обслуживания и ремонта. По аналогии с системами отопления все стояки ГВС оборудуются компенсаторами и неподвижными опорами. Расчетная циркуляция выставляется при помощи регулирующей и балансировочной арматуры. Применение современных регуляторов позволяет использовать в ИТП одну группу теплообменников ГВС для 2-3 зон, что успешно реализуется на построенных по нашим проектам объектах.

Автоматические балансировочные клапаны в системах отопления

Современные системы отопления зданий являются системами, предъявляющими повышенные требования к надежности и регулируемости, особенно в высотных и протяженных зданиях. В таких условиях обеспечение гидравлической устойчивости является основной задачей как проектирования, так и эксплуатации системы отопления. Системы должны быть управляемыми во всех режимах и не выходить за пределы эффективной работы. Традиционно такая управляемость достигается повышением сопротивления узлов отопительных приборов (радиатор и терморегулятор) и гидравлической увязкой циркуляционных колец. С этой целью на объектах применяются радиаторные терморегуляторы RTD-N фирмы «Данфосс» с повышенным гидравлическим сопротивлением на обвязке отопительных приборов, а на стояках или приборных ветвях системы – автоматические балансировочные клапаны серии ASV-P (PV и PV Plus) и ASV-M (I). Возникает вопрос – насколько оправдано применение автоматических балансировочных клапанов в двухтрубной системе отопления, ведь ручные балансировочные клапаны дешевле. Это не совсем так. Фактически при таком подходе не учитываются те затраты, которые необходимы для наладки и запуска двухтрубной системы отопления с ручными балансировочными клапанами. Наладка систем с ручными балансировочными клапанами, как правило, осуществляется по одному из трех наиболее распространенных методов: пропорциональному, компенсационному или компьютерному (при помощи специализированного прибора PFM 3 000). Описание этих методик – тема для отдельной статьи, и в данном случае необходимо коснуться только подготовительного этапа, единого для всех методик. Перед наладкой системы необходимо провести следующие мероприятия: испытать систему на герметичность, промыть и прочистить фильтры, удалить воздух из системы, вывести в рабочий режим насос (100 % нагрузка). Все термостатические клапаны установить в положение, соответствующее проектной настройке (только так можно определить перегревы и недогревы помещений). Для этого колпачок термостатического клапана не должен упираться в шток. Колпачками защищают шток от грязи и поломок. Замена колпачков на термостатические элементы осуществляется только по окончании наладки. Проведение всех этих мероприятий возможно, фактически, только при наладке системы отопления нового незаселенного дома. После же заселения, когда те или иные переделки существенно изменяют гидравлику системы, проведение даже подготовительных мероприятий может существенно затрудниться.

И еще один факт – в среднем на наладку одного балансировочного клапана требуется 20 минут. Таким образом, в разветвленных системах отопления высотных зданий наладка только одной зоны может занять до 12 часов. В то же время при использовании первых двух методик (пропорциональной и компенсационной) необходимы два прибора PFM 3 000. Системы отопления с радиаторными терморегуляторами – это системы с переменными гидравлическими характеристиками, в них постоянно меняются сопротивления циркуляционных колец. Рассчитанные исходя из 100 % нагрузки системы, ручные балансировочные клапаны просто не способны реагировать на изменение гидравлических параметров при снижении расходов. Это приводит к шуму на радиаторных терморегуляторах, отсутствию теплового комфорта в помещениях, увеличению теплопотребления. Работа терморегуляторов может из плавного регулирования трансформироваться в двухпозиционное. Причиной всех этих проблем являются возникающие избыточные перепады давлений в отдельных кольцах и стояках системы, которые могут в большой степени отличаться от расчетных. Радиаторные терморегуляторы зачастую просто не рассчитаны на такие избыточные перепады давлений. Кроме того, большое количество ступеней увязки системы отопления существенно влияет на ее регулируемость.

Клапаны ASV-P или ASV-PV, установленные на обратном трубопроводе, связываются через импульсную трубку с клапанами ASV-M, установленными на подаче, и образуют регулятор перепада давлений (прямого действия), или совместно с клапаном ASV-I – регулятором перепада давлений с возможностью ограничения расхода.

Автоматические балансировочные клапаны разделяют систему отопления на несколько независимых подсистем. Подсистемами могут быть поэтажные, квартирные ветки или стояки. В подсистеме образуется свойственный только ей гидравлический режим, в пределах которого следует обеспечивать гидравлическую устойчивость. Количество ступеней увязывания циркуляционных колец в этом случаем зависит от места установки автоматического регулятора перепада давления и разветвленности регулируемого им участка системы. Чем ближе автоматический балансировочный клапан к отопительным приборам, тем проще гидравлическая увязка системы. Отсутствие большого количества ручных балансировочных клапанов снижает гидравлическое сопротивление системы и экономит стоимость энергии на перекачивание теплоносителя и улучшает тепловой комфорт в помещении. При наличии автоматических регуляторов перепада давления на неразветвленных ветках увязывание циркуляционных колец сводится к одноступенчатой процедуре. Количество циркуляционных колец в такой подсистеме равно количеству отопительных приборов.

При поквартирной разводке оптимальным решением является применение автоматических балансировочных клапанов ASV-P (PV) на обратном трубопроводе и запорно-измерительных клапанов ASV-I –на подающем. Использование именно этой пары клапанов дает возможность не только компенсировать влияние гравитационной составляющей, но и ограничивать расход на каждую квартиру в соответствии с расчетными параметрами.

Клапаны, как правило, подбираются по диаметру трубопроводов и настраиваются на поддержание перепада давлений на уровне 10 кПа. Такое значение настройки клапанов выбирается исходя из значения требуемых потерь давления на радиаторных терморегуляторах для обеспечения их оптимальной работы.

Ограничение расхода на квартиру задается настройкой на клапанах ASV-I. Причем следует учитывать, что в этом случае потери давления на данных клапанах необходимо включить в перепад давлений, поддерживаемый регулятором ASV-PV.

Основываясь на всем вышеизложенном, можно сделать следующие выводы.

Горизонтальная поквартирная разводка двухтрубной системы отопления является:

Наиболее защищенной от несанкционированных переделок;

Удобной с точки зрения эксплуатации;

Оптимальной для организации коммерческого учета потребления тепловой энергии.

Автоматические балансировочные клапаны:

Разделяют систему отопления на независимые подсистемы со стабилизированным перепадом давлений;

Устраняют влияние естественного давления до регулируемого участка;

Стабилизируют работу системы в течение длительного времени;

Обеспечивают оптимальные условия работы терморегуляторов;

Упрощают гидравлические расчеты системы отопления;

Не требуют дорогостоящей наладки системы;

Предотвращают шумообразование;

Позволяют постепенно запускать систему отопления.

Хочется надеяться, что материалы данной статьи будут способствовать переходу на поквартирные системы отопления, новые материалы и оборудование. Готовы ответить на любые возникшие по данной теме вопросы.

1 См. статьи «Инженерные решения высотного жилого комплекса», «АВОК», 2004, № 5, с. 12–18, и «Опыт проектирования и эксплуатации инженерных систем новых высотных жилых комплексов Москвы», «АВОК», 2005, № 2, с. 8–18.

На сегодняшний день для потребителей коммунальных услуг по причине роста их стоимости все актуальнее становится поквартирное отопление в многоквартирном доме. Такое теплоснабжение имеет отличия от централизованного и позволяет экономить средства. В сфере обеспечения теплом жильцов многоэтажных зданий действуют определенные стандарты и нормативы. При этом специалисты отмечают, что у централизованного и поквартирного способов теплоснабжения имеются свои нюансы, достоинства и недостатки. Преобладающей считается централизованная система подачи теплоносителя и горячего водоснабжения, но она отличается серьезными недостатками:

  • конкретный потребитель теплового ресурса (владелец квартиры) не заинтересован в его экономном расходовании и у него нет для этого технических возможностей;
  • транспортировка теплоносителя от источника тепла к конечному потребителю осуществляется на большие расстояния и на этом этапе происходят большие теплопотери.

Одновременно система поквартирного отопления имеет такие преимущества:
  • отсутствует необходимость в строительстве дорогих по финансовым затратам теплотрасс;
  • теплоноситель от места выработки к потребителю доставляется без потерь энергии;
  • у каждого владельца квартир есть возможность использовать необходимое ему количество тепла.

Обустройство поквартирной отопительной системы

Поквартирная система отопления состоит из:
  • теплогенератора, он же является источником теплоснабжения;
  • трубопроводов снабжения горячей водой с водоразборной арматурой;
  • трубопроводов отопления вместе с отопительными приборами.

Теплогенераторная представляет собой помещение общественного назначения или отдельно выделенное в квартире для размещения теплогенератора и другого оборудования.

Система поквартирного отопления позволяет на общегосударственном уровне экономить средства, которые необходимо изыскивать для строительства и ремонта теплотрасс. Одновременно у каждого владельца отопительного котла имеется возможность лично регулировать тепло в своей квартире, не оплачивая фиксированные цены, взимаемые ежемесячно при централизованной системе . Понятно, что владелец жилплощади в теплую погоду не будет включать обогрев.

Кроме этого центральное отопление, которое из года в год все дорожает, не всегда обеспечивает комфортную температуру в квартире в холодную погоду. Причин этому может быть несколько: авария на старой изношенной теплотрассе или отопительный сезон администрация региона решила начать позже.

Когда имеется система поквартирного отопления, для того, чтобы устанавливать требуемую температуру в течение разного времени суток используют программатор, подключаемый к современным отопительным котлам. К примеру, если владелец
с утра до вечера находится на работе, а других членов семьи дома не будет, тогда поддерживать в квартире высокую температуру нет необходимости. Котел в автоматическом режиме будет обеспечивать температуру, установленную на уровне, например, 18 градусов.

Комбинированная система отопления, подробное видео:


Если рассматривать существующие виды отопления в квартире, то следует отметить, что индивидуальное поквартирное отопление является материальным стимулированием, направленным на экономию тепла. На протяжении многих лет потребителям объясняют, что следует утеплять квартиры и окна, а не отапливать улицу. Но увещевания коммунальных служб остаются безрезультатными. Теперь же при наличии сумма платежей за газ зависит от степени утепления квартиры. Таким образом, для владельца жилплощади материальным стимулом становится уменьшение коммунальных платежей.

При наличии собственного двухконтурного котла, обычно используемого, когда создается поквартирное горизонтальное отопление в квартире, жильцы обеспечены как отоплением, так и горячей водой (прочитайте также: " "). В результате, при переходе на систему индивидуального обеспечения теплом, потребителям не грозит отключение горячей воды летом, так хорошо знакомое многим жителям больших городов.

Переход на поквартирные системы отопления все более характерен для новостроек. Однако и с централизованным отоплением новых домов тоже строится достаточно. Эта статья адресована тем, кто сейчас присматривается к новому жилью и размышляет, на каком варианте лучше остановиться.

О чем идет речь

Основная идея понятна: новый дом не подключается к централизованному отоплению. Что в результате?

  1. Застройщик, таким образом, экономит на разводке коммуникаций и установке отопительных приборов; кроме того, не требуются сложные расчеты и бесчисленные согласования с поставщиками тепловой энергии.
  2. Потенциальному покупателю квартиры то, что ему не продают жилье с уже заключенным договором на поставку тепловой энергии, тоже должно быть выгодно. Как минимум — он сам может выбирать источник тепла и температурный режим отопления.

Однако: на практике большая часть новостроек сдается с предустановленными двухконтурными газовыми котлами. Понятно, что их цена включается в стоимость жилья.

Квартиры с подведенными коммуникациями, но без предустановленной отопительной системы любого типа, впрочем, тоже можно увидеть в продаже. Давайте разберем оба случая.

Газовый котел

Сразу стоит сказать: газ ДЕЙСТВИТЕЛЬНО является самым дешевым источником тепла для отопления. По крайней мере, на данный момент. Давайте взвесим плюсы и минусы этого сценария.

Достоинства

Практика показывает, что разница в оплате между централизованным отоплением и автономным, с помощью газа, колеблется от 2 до 3 раз при одинаковом температурном режиме.

Почему так дорого обходится ЦО?

Понятное дело, что первый, уже почти безусловный рефлекс — обвинить во всем алчных чиновников. Однако тарифы на тепло ЖКХ имеют, помимо чьей-то злой воли, и вполне здравые обоснования.

  • Газ, который используется для производства тепла котельными и ТЭЦ, они оплачивают по более высокому по сравнению с частными лицами тарифу.
  • Амортизацию оборудования никто не отменял. Котлы нуждаются в периодическом ремонте и обслуживании; кроме того, в тарифы вынужденно приходится закладывать и плановую замену оборудования.
  • Ежегодный ремонт и плановая замена теплотрасс тоже ложится бременем на ваш карман.
  • Систему отопления дома надо обслуживать. В эту статью расходов входит плановая замена и ремонт стояков, устранение течей радиаторов, ревизия и замена задвижек в элеваторном узле, поверка и расточка сопла, контроль температурного режима элеватора и еще сотня разных работ, которые мы часто не замечаем.
  • Наконец, все потери тепла: на теплотрассе с содранной теплоизоляцией, в открытом нараспашку подъезде, даже в самой ТЭЦ оплачиваете… правильно, тоже вы.

Еще одно важнейшее достоинство, которым обладает поквартирная система отопления — независимость. Думается, любому приходилось мерзнуть дома в ожидании запуска отопления и страдать от духоты в жаркий апрельский день. подразумевает, что вы обеспечиваете в любой момент времени необходимый вам температурный режим, сообразуясь ТОЛЬКО с собственным комфортом.

Недостатки

Разумеется, не обошлось и без них.

  • Использование отвода продуктов сгорания по коаксиальному воздуховоду на фасад дома означает, что окна лучше лишний раз не открывать. Неизбежная при сгорании газа копоть будет попадать внутрь помещений.

Однако: в домах, проект которых изначально был оптимизирован под индивидуальное отопления, часто встречается более сложная схема работы котлов: воздух забирается с фасада, а продукты сгорания отводятся в вентканал, пропускная способность которого позволяет всем котлам по стояку работать на полной мощности одновременно.

На фото — именно такая новостройка. На фасад выведены каналы для забора воздуха.

  • Расход газа в угловых и средних квартирах дома будет различаться. В случае центрального отопления эта, пусть несколько комичная, проблема социального неравенства решается одинаковым размером оплаты за тепло.
  • Чем больше суммарное количество газового оборудования в здании, тем больше вероятность утечки газа с соответствующими последствиями. Да, современные котлы куда более безопасны, чем газовые плиты советского образца; однако в целом газ все-таки взрывоопасен.

Квартира без отопительного оборудования: решение проблемы отопления

Ну, а какие варианты возможны при покупке квартиры без предустановленного котла? Есть ли схемы отопления, по удобству и экономичности хотя бы приближающиеся к газу?

Собственно, выбор невелик. Большая часть источников тепла в условиях городской квартиры неприменима.

  • Твердотопливные котлы отпадают даже не из-за необходимости частого обслуживания, а из-за того, что в квартире негде складировать дрова и уголь.
  • Соляра — это ОЧЕНЬ громкий шум горелки и емкость объемом не меньше пары кубов. И потом, представьте себе процесс ее заполнения в многоквартирном доме…
  • Отопления электричеством (точнее, прямым нагревом с его помощью) — это очень дорого. Все энергосберегающие технологии (теплые полы, инфракрасные излучатели и тем более разнообразные электрорадиаторы и иже с ними) способны в лучшем случае сократить расходы на пару-тройку десятков процентов. Затраты все равно будут в 6-8 раз превышать расходы на отопление газом.

Что остается? Собственно, только тепловые насосы. Причем лишь двух типов — воздух-воздух и воздух-вода.

Расходы в бюджетном варианте несложно прикинуть: к примеру, для двухкомнатной квартиры площадью 60 квадратов вполне достаточно двух бытовых тепловых насосов Сooper@Hunter Nordic CH-S09FTXN стоимостью 22 000 рублей каждый. Именно эта модель выбрана не только за низкую цену, но и за прекрасную энергоэффективность в сочетании с большим диапазоном рабочих температур на обогрев (до -25С).

Давайте попробуем оценить расходы на в этом случае. Выполнить расчет своими руками более чем несложно:

  • Согласно СНиП, на отопление 10 м2 требуется один киловатт тепловой мощности.

Обратите внимание: новые дома строятся с активным использованием энергосберегающих технологий, так что на практике это значение можно смело делить на два. Однако будем исходить из худшего сценария.

  • Для квартиры в 60 М2 потребуется, таким образом, 6 киловатт. Номинальная мощность одного CH-S09FTXN составляет 3600 ватт; однако инверторная технология управления позволяет гибко регулировать мощность без остановок и последующих запусков компрессора.
  • Параметр C.O.P., означающий соотношение эффективной тепловой мощности и электрической, у наших кондиционеров равен 4,2. Для того, чтобы обеспечить номинальную мощность в 6 КВт, им придется непрерывно тратить 6/4,2=1,43 киловатта.

Остановимся именно на этом значении: с одной стороны, как показывает практика, при правильно рассчитанной тепловой мощности СРЕДНЯЯ потребляемая мощность за отопительный сезон не превышает половины номинала, с другой — эффективность тепловых насосов зависит от уличной температуры.

Понятно, что при +15 и при -25 на киловатт-час отобранного у атмосферного воздуха тепла расходы электроэнергии будут разными.

  • При текущей стоимости киловатт-часа сутки отопления обойдутся в 1,43КВт*4 р/КВт/ч*24 часа = 137 рублей. Месяц — в 4110.

Много это или мало?

С одной стороны — расходы вроде бы сопоставимы с затратами на центральное отопление. С других же сторон:

  • В реальности в доме с утепленным фасадом расходы будут НАМНОГО меньше.
  • Отопительный сезон начинается тогда, когда вам удобно.
  • Стоит учесть ближайшие перспективы. Нетрудно предсказать экспоненциальный рост цен на ископаемое топливо в ближайшие годы. А вот расценки на электроэнергию будут расти в разы медленнее: энергетическая промышленность всех стран переходит на возобновляемые источники.

На какой схеме отопления лучше остановиться — решать, безусловно, только вам.

Как перейти на автономное отопление

Существует ли инструкция по документальному оформлению перехода на автономное отопление для домов с ЦО?

Вот примерный порядок действий.

  1. Владелец квартиры уточняет техническую возможность отключения квартиры от ЦО. Общаться придется либо с жилищной организацией, либо, что разумнее, напрямую с поставщиком тепла. Действующим коммунальным законодательством теоретическая возможность перехода на индивидуальное отопление предусмотрена.
  2. Готовятся техусловия на установку газового оборудования — расчет потребления, чертежи подводки газа и т.д. Разумеется, если вы переходите на газ. При использовании электроотопления любого типа ваш путь лежит к Энергосбыту.
  3. Готовится акт пожарного надзора. В городских квартирах стены обычно из негорючего материала, так что препятствий возникнуть не должно.
  4. Если планируется использовать коаксиальный воздуховод с выводом на фасад здания — вам понадобится разрешение Санэпиднадзора.
  5. Далее нужно обратиться в лицензированную монтажную компанию и подготовить пакет документов: сертификаты на устанавливаемое оборудование, инструкции по установке, копию лицензии монтажников, договор на обслуживание.
  6. После полного монтажа системы газового отопления придется пригласить специалиста газовой службы для подключения и первого запуска котла. В случае тепловых насосов это, понятное дело, не нужно.
  7. Остается поставить котел на сервисное обслуживание и проинформировать газовую службу о переходе на автономное теплоснабжение.

Однако: при определенных обстоятельствах затраты и сроки подготовки документации могут оказаться такими, что возникает резонный вопрос: не проще ли обменять квартиру на коттедж?

Заключение

Еще немного о том, как можно реализовать индивидуальное отопление в многоквартирном доме, вы сможете узнать из прикрепленного к статье видео.

1. Что такое поквартирное теплоснабжение?

Поквартирное теплоснабжение- обеспечение теплотой систем отопления, вентиляции и горячего водоснабжения квартир.

Поквартирное теплоснабжение может быть автономным и централизованным.

2. Что представляет собой автономная поквартирная система теплоснабжения?

Система состоит из источника теплоснабжения - теплогенератора, трубопроводов горячего водоснабжения с водоразборной арматурой, трубопроводов отопления с отопительными приборами и теплообменников систем вентиляции .

3. Что такое централизованная поквартирная система?

Такая система применяется в многоэтажных домах и состоит из вертикальных стояков с горизонтальной (поквартирной, поэтажной) разводкой (подробнее см. вопрос 7).

4. Каковы достоинства и недостатки поквартирного отопления?

Достоинства:

Возможность поддержания комфортных условий в квартире исходя исключительно из собственных потребностей и пожеланий владельца;

Возможность изменять систему по усмотрению собственника, т.е. менять отопительные приборы, трубы и арматуру, производить гидравлические испытания и наладку, не влияя при этом на режим работы других квартирных систем;

Такое отопление позволяет разрешить проблемы летнего отключения горячей воды;

- р емонтопригодность системы, т.к. скрытая прокладка полимерных труб в гофре позволит, при необходимости, произвести замену поврежденного участка трубы без вскрытия конструкции стены или пола.

Срок службы поквартирной системы примерно в 2 раза выше за счет материалов (расчетный срок службы системы около 50 лет).

¾ реальные затраты на поквартирное отопление оказываются в разы меньше, чем те, которые приходится нести жителям обычных домов: эксплуатация индивидуальных котлов позволяет снизить стоимость коммунальных услуг в 5-8 раз.

¾ реальное материальное стимулирование экономии тепла.

Недостатки:

Необходимость в обслуживании газового котла (заключение договора техобслуживания);

Затраты на установку котла, газового счетчика, газоанализатора;

Пожароопасность;

При наличии в схеме циркуляционного насоса, прекращается отопление и подача горячей воды в случае отключения электричества.

5. Каковы требования к автономным системам поквартирного теплоснабжения?

Основные требования таковы:

Разрешается применять такие системы в зданиях высотой не более 28 м. Для зданий большей высоты допускается по заданию на проектирование с учетом требований федерального закона ;

Теплогенераторы должны быть снабжены автоматикой безопасности;

В помещениях теплогенераторной, где расположен газовый котел необходима установка сигнализатора загазованности .

Устройство воздуховодов, дымоходов и прочие требования подробно изложены в .

6. Какие котлы (теплогенераторы) используются для поквартирного теплоснабжения?

теплогенератор (котел) - источник теплоты тепловой мощностью до 100 кВт, в котором для нагрева теплоносителя, направляемого в системы теплоснабжения, используется энергия, выделяющаяся при сгорании газового топлива;

теплогенератор типа «В»* -теплогенератор с открытой камерой сгорания, подключаемый к индивидуальному дымоходу, с забором воздуха для горения топлива непосредственно из помещения, в котором теплогенератор установлен;

теплогенератор типа «С»* - теплогенератор с закрытой камерой сгорания, в котором дымоудаление и подача воздуха для горения осуществляются за счет встроенного вентилятора. Система сжигания газового топлива (подача воздуха для горения, камера сгорания, дымоудаление) в этих теплогенераторах газоплотна по отношению к помещениям, в которых они установлены ;

Для поквартирных систем теплоснабжения жилых зданий следует применять автоматизированные теплогенераторы на газовом топливе с герметичными (закрытыми) камерами сгорания (типа "С") полной заводской готовности, на газообразном топливе, если они отвечают следующим требованиям:

а) температура теплоносителя не более 95 °С, давление не более 0,3 МПа;

б) теплогенераторы общей теплопроизводительностью не более 50 квт в квартире можно устанавливать в кухне, коридоре или нежилом помещении (кроме ванной);

в) теплогенераторы общей теплопроизводительностью более 50 квт (максимальное значение до 100 квт) размещаются в специальном помещении – теплогенераторной.

Котлы типа «В» можно применять, если здание не выше 15 м .

Котлы бывают одно – и двухконтурные. Одноконтурный котел используется только для нужд отопления. Двухконтурный – и для отопления и для горячего водоснабжения. Соответственно в нем предусмотрены два уровня мощности, например 5-15 квт. Максимум потребляется только во время использования горячей воды.

Рисунок 1 - отопительный настенный котел Vaillant

7. Как устроены поквартирные системы с централизованной подачей теплоносителя?

Такие системы состоят из локальных квартирных систем, которые объединяются стояками по вертикали. Стояки присоединяются к разводящим магистралям (рисунок 2). К магистралям же присоединяются стояки лестничных клеток. Если в здании есть пристройки или встроенные помещения общественного назначения, то для их отопления предусматриваются отдельные системы


а– локальные квартирные системы; б – квартирные узлы ввода; в – стояк;

г – магистральный трубопровод

Рисунок 2 – Принципиальная схема поквартирной системы жилого здания

К тепловым сетям здание присоединяется через общий тепловой пункт, который желательно подключать по независимой схеме.

8. Как следует прокладывать магистральные трубопроводы?

Магистральные трубопроводы организуют системы с нижней разводкой (рисунок 3а), и с верхней разводкой (рисунок 3б).

Наиболее выгодным вариантом является нижняя разводка. Она удобнее в эксплуатации и наиболее устойчива гидравлически.

Рисунок 3 – Прокладка магистральных трубопроводов

Верхняя разводка удобна при наличии крышной котельной.

Показанную на рисунке 3в прокладку обеих магистралей сверху выполнять нежелательно, т.к. в этом случае естественное давление будет препятствовать движению воды. Это снижает гидравлическую устойчивость системы и затрудняет ее пуск в начале отопительного сезона. При такой схеме невозможно обеспечить централизованный слив воды.

Систему можно проектировать как тупиковой, так и попутной (рисунок 4).


а – тупиковое; б - попутное

9. Сколько стояков должно быть в здании при поквартирном отоплении?

Количество стояков минимально может быть равно количеству секций в здании. Но в зависимости от конструктивных особенностей одна секция может содержать несколько стояков. Максимальное число стояков каждого подъезда может соответствовать количеству квартир на этаже.

Один стояк не может обслуживать квартиры разных секций.

10. Каковы особенности устройства стояков?

1.

Каждый стояк должен иметь дренаж для спуска воды. Дренаж может быть стационарным, со сливом воды в канализацию (рисунок 5а). Дренажные трубопроводы следует выполнять с разрывом струи для контроля возможной утечки воды. При наличии трапов или дренажных приямков можно для слива использовать временные шланги (Рисунок 5б).

а – со стационарным дренажным трубопроводом; б – со съемным шлангом

Рисунок 5 - Устройство дренажа стояков

2. Трубы стояка крепятся на подвижных и неподвижных опорах. Следует предусматривать тепловое удлинение труб и компенсацию этого удлинения. Для компенсации используются изгибы труб, образующие Г- образные компенсаторы, а также устанавливаются П- образные или сильфонные компенсаторы. Расстояние между ними должно быть таким, чтобы тепловое удлинение на этом отрезке было не более 50 мм. Сильфонные компенсаторы (рисунок 6) на вертикальных трубопроводах устанавливают возле неподвижных опор (на стояках – ниже опоры).


1 – сильфонный компенсатор; 2 – неподвижная опора; 3 – направляющая опора

Рисунок 6 – Установка сильфонного компенсатора

3.
Если диаметр стояка не более 25 мм, то в зданиях до 8 этажей компенсаторы можно не ставить, а компенсацию удлинений производить за счет отступов от стояка в точках присоединения его к разво-дящей магистрали (рисунок 7)

Рисунок 6 - Отступы для компенсации тепловых удлинений стояка

11. Как устроены индивидуальные квартирные узлы ввода?

Каждая квартирная система подключается к стояку либо через индивидуальный узел ввода, либо через групповой узел, который предназначен для нескольких квартир одного этажа.

Индивидуальный квартирный тепловой узел (КТУ) (рисунок 7) предпочтительно устанавливать на лестничной клетке, чтобы обеспечить доступ к нему обслуживающего персонала.

1 – шаровый кран; 2 – сетчатый фильтр; 3 – комплектный теплосчетчик; 4 – комплектный шаровый кран для установки термопреобразователя; 5 - автоматический балансировочный клапан; 6 – ручной балансировочный клапан; 7 – распределительный коллектор; 8 - Спускной кран; 9 – воздуховыпускное устройство.

Рисунок 7 – Принципиальная схема индивидуального квартирного узла ввода

КТУ находится в специальном шкафу вблизи размещения труб стояка отопления, разводок горячей и холодной воды. Распределительные коллекторы, как правило, находятся внутри квартиры Индивидуальный КТУ выполняет полный набор функций, а именно:

Присоединительную;

Измерительную;

Регулирующую

Распределительную

12. Как устроен групповой узел ввода?

Этот узел предназначен для обслуживания нескольких квартир одного этажа рисунок 8). В групповом узле располагается общая часть оборудования – фильтр, автоматический балансировочный клапан и пр.

Групповой узел включает в себя несколько индивидуальных (по числу квартир) теплосчетчиков, расположенных в шкафу на лестничной площадке, и находящиеся в квартирах распределительные коллекторы.

Выгода такого КТУ заключается в экономии оборудования.

1 – шаровый кран; 2 – сетчатый фильтр; 3 – комплектный теплосчетчик; 4 – комплектный шаровый кран для установки термопреобразователя; 5 - автоматический балансировочный клапан; 6 – ручной балансировочный клапан; 7 – распределительный коллектор; 8 - Спускной кран; 9 – воздуховыпускное устройство. 10 – ручной запорный клапан; 11-ручной балансировочный клапан

Рисунок 8 – Групповой квартирный узел ввода

13. Как разводить трубопроводы в квартире?

Система всегда выполняется двухтрубной. Существуют две схемы разводки: лучевая (рисунок 9) и периметральная (рисунок 10).

а – произвольная; б – с пристенной трассировкой

Рисунок 9 – Двухтрубная лучевая разводка

а – тупиковая; б – попутная

Рисунок 10 – Двухтрубная периметральная разводка

Наилучшим вариантом является лучевая разводка, при которой каждый прибор присоединяется к распределительному коллектору индивидуально. На пути от коллектора до прибора нет промежуточных соединений, что обеспечивает высокую надежность. Кроме того изменение расхода через один из приборов практически не влияет на работу остальных.

Единственный минус произвольной лучевой трассировки – это возможность повреждения труб при ремонте полов. Пристенная трассировка исключает такой риск. Вдоль стен можно прокладывать трубы в специальных плинтусах-коробах.

Периметральная разводка предполагает тройники на ответвлениях к каждому прибору. Это снижает надежность системы. Для повышения надежности заделывать в пол можно только паяные, сварные или прессовые соединения, но не разрешено заделывать резьбовые. Все фитинги должны быть доступны для осмотра.

Кроме того, периметральная разводка дороже и более трудоемка, чем лучевая за счет большого количества фитингов и необходимости пробивки отверстий в перегородках и стенах.

14. Какие трубы применяются в квартирных системах?

Трубопроводы квартирной системы могут быть изготовлены из самого различного материала. Применяются как стальные, так и медные, металлополимерные, выполненные из сшитого полиэтилена, стеклопластиковые и пр. Все они должны удовлетворять следующим требованиям:

Параметры теплоносителя (температура и давление) для труб из

полимерных материалов не должны превышать предельно допустимые, указанные в паспорте изделия, но не более 90 о С и 1,0 МПа;

Полимерные трубы, применяемые в сочетании с металлическими трубами, приборами или оборудованием, должны иметь антидиффузный слой. Это необходимо, чтобы исключить диффузию кислорода через слой полимера и коррозию металлических элементов;

Соединительные детали и изделия разрешается применять только соответствующие выбранному типу труб .

При поквартирной разводке трубы, как правило, укладываются в полу в стяжке. На слой стяжки толщиной 50-80 мм настилается фанера, а сверху - паркет, линолеум или другое покрытие.

Нормативными документами не оговаривается повсеместное использование гофротруб. Однако, при прохождении трубы в бетонной стяжке через деформационный шов обязательна защитная оболочка длиной не менее 1 м .

Трубы из полимерных материалов желательно прокладывать в гофротрубе. Это позволяет (при лучевой системе) заменять трубы длиной до 20 м без вскрытия пола. Гофротрубы бывают металлическими или полимерными (рисунок 11).

Если в квартире проектируются паркетные полы, то следует предусмотреть теплоизоляцию для труб. При повышенной температуре деревянное покрытие рассыхается. Поэтому средняя температура пола не должна превышать

а б

а – металлические; б - полимерные

Рисунок 11 – Гофротрубы

27 о С . На рисунке 12 показан участок лучевой прокладки труб в теплоизоляции.

Рисунок 12 – Прокладка труб в теплоизоляции


15. Что собой представляют квартирные теплосчетчики?

В состав комплекса теплосчетчика входят:

Тепловычислитель;

Первичный преобразователь расхода (расходомер);

Два датчика температуры.

Тепловычислитель – это электронное устройство, которое вычисляет количество потребленной теплоты. Для этого ему требуются показания температур в подающем и обратном трубопроводе, а также расход теплоносителя. Результаты расчета накапливаются в памяти с заданной периодичностью. Электропитание теплосчетчика осуществляется от встроенной батареи.

На рисунке 13 изображены виды теплосчетчиков.

Рисунок 13 – Теплосчетчики Данфосс (а) и «Карат-компакт» (б)

Срок хранения в памяти помесячных значений расхода тепла у современных теплосчетчиков может составлять от 12 до 36 мес.

Расходомеры применяются в большинстве случаев либо ультразвуковые, либо тахометрические (крыльчатые или турбинные).

Ультразвуковые имеют высокую точность и не влияют на гидравлические характеристики системы. Однако для их установки требуется относительно длинный прямой участок трубопровода.

Тахиометрические датчики дешевле и достаточно точны, но требуют установки фильтра механической очистки.

В качестве датчиков температуры применяются погружные термометры сопротивления (рисунок 14).

Рисунок 14 – Погружной термометр сопротивления и гильза для него

На рисунке 15 изображена установка теплосчетчика со встроенными датчиками температуры, один из которых находится рядом со счетчиком, а второй встроен в кран, установленный на обратной магистрали.

Рисунок 15 – Установка теплосчетчика со специальным краном

Обитателей городских квартир обычно не интересует, как работает отопление в их доме. Нужда в подобных знаниях может возникнуть, когда хозяева пожелают повысить комфорт в доме или улучшить эстетический вид инженерного оборудования. Для тех, кто собирается затеять ремонт, расскажем вкратце про системы отопления многоквартирного дома.

Виды систем отопления многоквартирных домов

В зависимости от структуры, характеристик теплоносителя и схем разводки трубопроводов отопление многоквартирного дома подразделяют на следующие типы:

По расположению источника тепла

  • Поквартирная система отопления, при которой газовый котёл устанавливается в кухне или отдельном помещении. Некоторые неудобства и вложения в оборудование с лихвой компенсируются возможностью включать и регулировать отопление по своему усмотрению, а также низкими эксплуатационными затратами за счёт отсутствия потерь в теплотрассах. При наличии собственного котла практически отсутствуют ограничения по реконструкции системы. Если, к примеру, хозяева пожелают заменить батареи на тёплые водяные полы - к этому нет никаких технических препятствий.
  • Индивидуальное отопление, при котором своя котельная обслуживает один дом или жилой комплекс. Такие решения встречаются как в старом жилом фонде (кочегарки), так и в новом элитном жилье, где сообщество жильцов само решает, когда начать отопительный сезон.
  • Центральное отопление в многоквартирном доме наиболее распространено в типовом жилье.

Устройство центрального отопления многоквартирного дома, передача тепла от ТЭЦ осуществляется через местный теплопункт.

По характеристикам теплоносителя

  • Водяное отопление, в качестве теплоносителя используется вода. В современном жилье с поквартирным или индивидуальным отоплением встречаются экономичные низкотемпературные (низкопотенциальные) системы, где температура теплоносителя не превышает 65 ºС. Но в большинстве случаев и во всех типовых домах теплоноситель имеет расчётную температуру в пределах 85-105 ºС.
  • Паровое отопление квартиры в многоквартирном доме (в системе циркулирует водяной пар) имеет ряд существенных недостатков, в новых домах давно не используется, старый жилой фонд повсеместно переводят на водяные системы.

По схеме разводки

Основные схемы отопления в многоквартирных домах:

  • Однотрубная - как подача, так и обратный отбор теплоносителя к отопительным приборам осуществляется по одной магистрали. Такая система встречается в «сталинках» и «хрущёвках». Обладает серьёзным недостатком: радиаторы расположены последовательно и из-за остывания в них теплоносителя температура нагрева батарей падает по мере удаления их от теплопункта. Для того, чтобы сохранить теплоотдачу, количество секций увеличивается по ходу движения теплоносителя. В чистой однотрубной схеме невозможна установка приборов регулирования. Не рекомендуется изменять конфигурацию труб, устанавливать радиаторы другого типа и габаритов, иначе работа системы может быть серьёзно нарушена.
  • «Ленинградка» - усовершенствованный вариант однотрубной системы, который, благодаря подключению тепловых приборов через байпас, снижает их взаимовлияние. Можно установить на радиаторы регулирующие (не автоматические) устройства, заменить радиатор на иной тип, но схожей ёмкости и мощности.
  • Двухтрубная схема отопления многоквартирного дома стала широко использоваться в «брежневках», популярна и по сей день. Подающая и обратная магистрали в ней разделены, поэтому теплоноситель на входах во все квартиры и радиаторы имеет почти одинаковую температуру, замена радиаторов на иной тип и даже объём не оказывает существенного влияния на работу других приборов. На батареи можно устанавливать приборы регулирования, в том числе автоматические.

Слева - усовершенствованный вариант однотрубной схемы (аналог «ленинградки»), справа - двухтрубный вариант. Последний обеспечивает более комфортные условия, точное регулирование и даёт более широкие возможности по замене радиатора

  • Лучевая схема применяется в современном нетиповом жилье. Подключение приборов параллельное, взаимное влияние их минимально. Разводка, как правило, выполняется в полу, что позволяет освободить стены от труб. При установке приборов регулирования, в том числе автоматических, обеспечивается точное дозирование количества тепла по помещениям. Технически возможна как частичная, так и полная замена системы отопления в многоквартирном доме с лучевой схемой в пределах квартиры с существенным изменением её конфигурации.

При лучевой схеме в квартиру входят подающая и обратная магистрали, а разводка осуществляется параллельно отдельными контурами через коллектор. Трубы, как правило, располагают в полу, радиаторы аккуратно и незаметно подключают снизу

Замена, перенос и выбор радиаторов в многоквартирном доме

Оговоримся, что какие любые изменения в поквартирное отопление в многоквартирном доме необходимо согласовывать с исполнительными органами и эксплуатирующими организациями.

Мы уже упоминали, что принципиальная возможность замены и переноса радиаторов обусловлена схемой. Как правильно выбрать радиатор для многоквартирного дома? Необходимо учесть следующее:

  • В первую очередь радиатор должен выдерживать давление, которое в многоквартирном доме выше, чем в частном. Чем больше количество этажей, тем выше может быть испытательное давление, оно может достигать 10 атм, а в высотных зданиях даже 15 атм. Точное значение можно узнать в местной эксплуатирующей службе. Отнюдь не все радиаторы, продающиеся на рынке, обладают соответствующими характеристиками. Значительная часть алюминиевых и многие стальные радиаторы не подойдут для многоквартирного дома.
  • Можно ли и насколько изменить тепловую мощность радиатора, зависит от применённой схемы. Но в любом случае теплоотдачу прибора необходимо рассчитать. У одной типовой секции чугунной батареи теплоотдача равна 0,16 кВт при температуре теплоносителя 85 ºС. Умножив число секций на эту величину, получим тепловую мощность существующей батареи. Характеристики нового отопительного прибора можно найти в его техническом паспорте. Панельные радиаторы не набираются из секций, имеют фиксированные размеры и мощность.

Усреднённые данные теплоотдачи различных типов радиаторов, могут различаться в зависимости от конкретной модели

  • Материал также имеет значение. Центральное отопление в многоквартирном доме зачастую характеризуется низким качеством теплоносителя. Наименее чувствительны к загрязнениям традиционные чугунные батареи, хуже всего реагируют на агрессивную среду алюминиевые. Неплохо себя проявили биметаллические радиаторы.

Установка теплового счётчика

Тепловой счётчик без проблем может быть установлен при лучевой схеме разводки в квартире. Как правило, в современных домах уже имеются приборы учёта. Что касается существующего жилого фонда с типовыми системами отопления, такая возможность есть отнюдь не всегда. Это зависит от конкретной схемы и конфигурации трубопроводов, консультацию можно получить в местной эксплуатирующей организации.

Поквартирный прибор учёта тепла можно установить при лучевой и двухтрубной схеме разводки, если на квартиру идёт отдельная ветка

Если установить прибор учёта на всю квартиру не удаётся, можно разместить компактные тепловые счётчики на каждом из радиаторов.

Альтернатива квартирному счётчику - приборы учёта тепла, размещаемые непосредственно на каждом из радиаторов

Отметим, что установка приборов учёта, замена радиаторов, внесение иных изменений в устройство отопления в многоквартирном доме требуют предварительного согласования и должны выполняться специалистами, представляющими организацию, обладающую лицензией на проведение соответствующих работ.

Видео: как подают отопление в многоквартирном доме