Домой / Утепления / Нормы вибрации вентиляторов. Причины неисправности тягодутьевых машин Причины повреждение подшипников

Нормы вибрации вентиляторов. Причины неисправности тягодутьевых машин Причины повреждение подшипников

8.1.1 Общие положения

На рисунках 1 - 4 показаны некоторые возможные точки и направления измерений на каждом подшипнике вентилятора. Значения, приведенные в таблице 4, относятся к измерениям в направлении, перпендикулярном к оси вращения. Число и местоположение точек измерений как для заводских испытаний, так и для измерений на месте эксплуатации определяют по усмотрению изготовителя вентиляторов или по соглашению с заказчиком. Рекомендуется проводить измерения на подшипниках вала колеса вентилятора (крыльчатки). Если это невозможно, датчик следует установить в таком месте, где обеспечена максимально короткая механическая связь между ним и подшипником. Датчик не следует закреплять на безопорных панелях, корпусе вентилятора, элементах ограждения или других местах, не имеющих прямой связи с подшипником (результаты таких измерений могут быть использованы, но не для оценки вибрационного состояния вентилятора, а для получения информации о вибрации, передаваемой к воздуховоду или на основание, - см. ГОСТ 31351 и ГОСТ ИСО 5348.

Рисунок 1 - Расположение трехкоординатного датчика для горизонтально установленного осевого вентилятора

Рисунок 2 - Расположение трехкоординатного датчика для радиального вентилятора одностороннего всасывания

Рисунок 3 - Расположение трехкоординатного датчика для радиального вентилятора двустороннего всасывания

Рисунок 4 - Расположение трехкоординатного датчика для вертикально установленного осевого вентилятора

Измерения в горизонтальном направлении следует проводить под прямым углом к оси вала. Измерения в вертикальном направлении должны быть проведены под прямым углом к горизонтальному направлению измерений и под прямым углом к валу вентилятора. Измерения в продольном направлении следует проводить в направлении, параллельном оси вала.

8.1.2 Измерения с использованием датчиков инерционного типа

Все значения вибрации, указанные в настоящем стандарте, относятся к измерениям, выполненным с помощью датчиков инерционного типа, сигнал которых воспроизводит движение корпуса подшипника.

Применяемые датчики могут быть либо акселерометрами, либо датчиками скорости. Особое внимание следует уделить правильному креплению датчиков: без зазоров по опорной площадке, качаний и резонансов. Размер и масса датчиков и системы крепления не должны быть чрезмерно большими, чтобы не вносить существенных изменений в измеренную вибрацию. Суммарная погрешность, обусловленная способом крепления датчика вибрации и калибровкой измерительного тракта, не должна превышать ±10 % значения измеряемой величины.

8.1.3 Измерения с использованием датчиков бесконтактного типа

По соглашению между пользователем и изготовителем могут быть установлены требования к предельным значениям перемещения вала (см. ГОСТ ИСО 7919-1) внутри подшипников скольжения. Соответствующие измерения могут быть проведены с помощью датчиков бесконтактного типа.

В этом случае измерительная система определяет перемещение поверхности вала относительно корпуса подшипника. Очевидно, что допустимая амплитуда перемещений не должна превышать значения зазора в подшипнике. Значение внутреннего зазора зависит от размера и типа подшипника, нагрузки (радиальной или осевой), направления измерений (отдельные конструкции подшипников имеют отверстие эллиптического типа, для которого зазор в горизонтальном направлении больше, чем в вертикальном). Многообразие факторов, которые следует принимать во внимание, не позволяет установить единые предельные значения перемещения вала, однако некоторые рекомендации представлены в виде таблицы 3. Значения, приведенные в этой таблице, представляют собой процентное отношение к общему значению радиального зазора в подшипнике в каждом направлении.

Таблица 3 - Предельное относительное перемещение вала внутри подшипника

Максимальное рекомендуемое перемещение, проценты значения зазора1) (вдоль любой оси)
Пуск в эксплуатацию/Удовлетворительное состояние Менее 25 %
Предупреждение +50 %
Останов +70 %
1) Значения радиального и осевого зазоров для конкретного подшипника следует узнавать у его поставщика.

Приведенные значения даны с учетом «ложных» перемещений поверхности вала. Эти «ложные» перемещения появляются в результатах измерений вследствие того, что на эти результаты влияют помимо вибрации вала также его механические биения, если вал погнут или имеет некруглую форму. При использовании датчика бесконтактного типа вклад в результат измерений дадут также электрические биения, определяемые магнитными и электрическими свойствами материала вала в точке измерений. Считают, что при пуске вентилятора в эксплуатацию и его последующей нормальной работе размах суммы механических и электрических биений в точке измерений не должен превышать большего из двух значений: 0,0125 мм или 25 % измеренного значения перемещения. Биения определяют в процессе медленного проворачивания вала (на скорости от 25 до 400 мин-1), когда действие на ротор сил, вызванных дисбалансом, незначительно. Для того чтобы уложиться в установленный допуск по биениям, может потребоваться дополнительная обработка вала. Датчики бесконтактного типа, по возможности, следует закреплять непосредственно в корпусе подшипника.

Приведенные предельные значения применимы только для вентилятора, работающего в номинальном режиме. Если конструкция вентилятора предусматривает его работу от привода с переменной скоростью вращения, то на других скоростях возможны более высокие уровни вибрации вследствие неизбежного влияния резонансов.

Если в вентиляторе предусмотрена возможность изменения положения лопастей относительно потока воздуха у входного отверстия, приведенные значения следует применять для условий работы с максимально открытыми лопастями. Следует учесть, что срыв воздушного потока, особенно заметный при больших углах раскрытия лопасти относительно входного воздушного потока, может приводить к повышенным уровням вибрации.

Вентиляторы, устанавливаемые по схемам В и D (см. ГОСТ 10921), следует испытывать с всасывающими и (или) нагнетательными воздуховодами, длина которых превышает их диаметр не менее чем в два раза (см. также приложение С).

Предельная вибрация вала (относительно подшипниковой опоры):

Пуск/удовлетворительное состояние: (0,25´0,33 мм) = 0,0825 мм (размах);

Уровень предупреждения: (0,50´0,33 мм) = 0,165 мм (размах);

Уровень останова: (0,70´0,33 мм) = 0,231 мм (размах).

Сумма механического и электрического биений вала в точке измерений вибрации:

b) 0,25´0,0825 мм = 0,0206 мм.

Большее из двух значений составляет 0,0206 мм.

8.2 Система опоры вентилятора

Вибрационное состояние вентиляторов после их установки определяют с учетом жесткости опоры. Опору считают жесткой, если первая собственная частота системы «вентилятор - опора» превышает скорость вращения. Обычно при установке на бетонные фундаменты больших размеров опору можно считать жесткой, а при установке на виброизоляторы - податливой. Стальная рама, на которую часто устанавливают вентиляторы, может относиться к любому из двух указанных типов опоры. В случае сомнений в отношении типа опоры вентилятора можно выполнить расчеты или провести испытания для определения первой собственной частоты системы. В некоторых случаях опору вентилятора следует рассматривать как жесткую в одном направлении и податливую в другом.

8.3 Пределы допустимой вибрации вентиляторов при испытаниях в заводских условиях

Предельные уровни вибрации, приведенные в таблице 4, применяют к вентиляторам в сборе. Они относятся к измерениям виброскорости в узкой полосе частот на опорах подшипников для частоты вращения, применяемой при испытаниях в заводских условиях.

Таблица 4 - Предельные значения вибрации при испытаниях в заводских условиях

Категория вентилятора
Жесткая опора Податливая опора
BV-1 9,0 11,2
BV-2 3,5 5,6
BV-3 2,8 3,5
BV-4 1,8 2,8
BV-5 1,4 1,8

Примечания

1 В приложении А указаны правила преобразования единиц виброскорости в единицы виброперемещения или виброускорения для вибрации в узкой полосе частот.

2 Значения в настоящей таблице относятся к номинальной нагрузке и номинальной частоте вращения вентилятора, работающего в режиме с открытыми лопатками входного направляющего аппарата. Предельные значения для других условий нагружения должны быть согласованы между изготовителем и заказчиком, но рекомендуется, чтобы они не превышали табличных значений более чем в 1,6 раза.

8.4 Пределы допустимой вибрации вентиляторов при испытаниях на месте эксплуатации

Вибрация любого вентилятора на месте эксплуатации зависит не только от качества его балансировки. Влияние будут оказывать, например, факторы, связанные с установкой, такие как масса и жесткость системы опоры. Поэтому изготовитель вентиляторов, если только это не оговорено контрактом, не несет ответственности за уровень вибрации вентилятора на месте его эксплуатации.

Таблица 5 - Предельные значения вибрации на месте эксплуатации

Вибрационное состояние вентилятора Категория вентилятора Предельное с.к.з. виброскорости, мм/с
Жесткая опора Податливая опора
Пуск в эксплуатацию BV-1 10 11,2
BV-2 5,6 9,0
BV-3 4,5 6,3
BV-4 2,8 4,5
BV-5 1,8 2,8
Предупреждение BV-1 10,6 14,0
BV-2 9,0 14,0
BV-3 7,1 11,8
BV-4 4,5 7,1
BV-5 4,0 5,6
Останов BV-1 -1) -1)
BV-2 -1) -1)
BV-3 9,0 12,5
BV-4 7,1 11,2
BV-5 5,6 7,1

1) Уровень останова для вентиляторов категорий BV-1 и BV-2 устанавливают на основе долговременного анализа результатов измерений вибрации.

Вибрация новых принимаемых в эксплуатацию вентиляторов не должна превышать уровень «пуск в эксплуатацию». По мере эксплуатации вентилятора следует ожидать повышения уровня его вибрации вследствие процессов износа и кумулятивного эффекта влияющих факторов. Такое повышение вибрации является, в общем, закономерным и не должно вызывать тревоги, пока не достигнет уровня «предупреждение».

По достижении вибрацией уровня «предупреждение» необходимо исследовать причины повышения вибрации и определить меры по ее снижению. Работа вентилятора в таком состоянии должна быть под постоянным наблюдением и ограничена временем, требуемым для определения мер по устранению причин повышенной вибрации.

Если уровень вибрации достигает уровня «останов», меры по устранению причин повышенной вибрации должны быть приняты незамедлительно, в противном случае вентилятор должен быть остановлен. Задержка с приведением уровня вибрации к допустимому уровню может повлечь за собой повреждение подшипников, появление трещин в роторе и в местах сварки корпуса вентилятора и, в конечном итоге, разрушение вентилятора.

При оценке вибрационного состояния вентилятора следует контролировать изменения уровня вибрации со временем. Внезапное изменение уровня вибрации свидетельствует о необходимости немедленного осмотра вентилятора и принятия мер по его техническому обслуживанию. При контроле изменения вибрации не следует принимать во внимание переходные процессы, вызванные, например, заменой смазки или процедурами технического обслуживания.

Причинами повреждений тягодутьевых машин во время работы могут быть причины механического, электрического и аэродинамического характера.

Причинами механического характера являются:

  • -неуравновешенность рабочего колеса в результате износа или отложений золы (пыли) на лопатках;
  • -износ элементов соединительной муфты: ослабление посадки втулки рабочего колеса на валу или ослабление растяжек крыльчатки;
  • -ослабление фундаментных болтов (при отсутствии контргаек и ненадежных замков против отвертывания гаек) или недостаточная жесткость опорных конструкций машин;
  • -ослабление затяжки анкерных болтов корпусов подшипников вследствие установки под ними при центровке некалиброванных прокладок;
  • -неудовлетворительная центровка роторов электродвигателя и тягодутьевой машины;
  • -чрезмерный нагрев и деформация вала вследствие повышенной температуры дымовых газов.

Причиной электрического характера является большая неравномерность воздушного зазора между ротором и статором электродвигателя.
Причиной аэродинамического характера является различная производительность по сторонам дымососов с двухсторонним всасыванием, которая может возникнуть при одностороннем заносе золой воздухоподогревателя или неправильной регулировке заслонок и направляющих аппаратов.
Во всасывающих карманах и улитках тягодутьевых машин, транспортирующих запыленную среду, наибольшему абразивному износу подвержены обечайки. а также всасывающие воронки улиток. Плоские боковины улиток и карманов изнашиваются в меньшей степени. На осевых дымососах котлов наиболее интенсивно изнашивается броня корпуса в местах расположения направляющих аппаратов и рабочих колес. Интенсивность износа возрастает с увеличением скорости потока и концентрации в нем угольной пыли или частиц золы.

Основными причинами вибрации дымососов и вентиляторов могут быть:

  • а)неудовлетворительная балансировка ротора после ремонта или разбалансировка во время работы в результате неравномерного износа и повреждения лопаток у рабочего колеса или повреждения подшипников;
  • б)неправильная центровка валов машин с электродвигателем или расцентровка их из-за износа муфты, ослабления опорной конструкции подшипников, деформация подкладок под ними, когда после центровки оставляется много тонких некалиброванных прокладок и т.п.;
  • в)повышенный или неравномерный нагрев ротора дымососа, вызвавшего прогиб вала или деформацию рабочего колеса;
  • г) односторонний занос золой воздухоподогревателя и т.п.

Вибрация возрастает при совпадении собственных колебаний машины и опорных конструкций (резонанс), а также при недостаточной жесткости конструкций и ослаблении фундаментных болтов. Возникшая вибрация может повлечь за собой ослабление болтовых соединений и пальцев муфты, шпонок, нагревание и ускоренный износ подшипников, обрыв болтов крепления корпусов подшипников, станины и разрушение фундамента и машины.
Предупреждение и устранение вибрации тягодутьевых машин требует комплексных мероприятий.
Во время приема - сдачи смены прослушивают дымососы и вентиляторы в работе, проверяют отсутствие вибрации, ненормального шума, исправность крепления к фундаменту машины и электродвигателя, температуру их подшипников, работу соединительной муфты. Такая же проверка производится при обходе оборудования во время смены. При обнаружении дефектов, угрожающих аварийной остановкой, сообщают старшему по смене для принятия необходимых мер и усиливают наблюдение за машиной.
Вибрации вращающихся механизмов устраняют путем их балансировки и центровки с электроприводом. Перед балансировкой производят необходимый ремонт ротора и подшипников машины.
Основным видом повреждения рабочих колес и кожухов дымососов является абразивный износ при транспортировке запыленной среды из-за больших скоростей и высокой концентрации уноса (золы) в дымовых газах. Наиболее интенсивно изнашиваются основной диск и лопатки в местах их приварки. Абразивный износ рабочих колес с загнутыми вперед лопатками значительно больше, чем колес с лопатками, загнутыми назад. При работе тягодутьевых машин наблюдается также и коррозионный износ рабочих колес при сжигании в топке сернистого мазута.
Зоны износа листовых лопаток необходимо наплавить твердым сплавом. Износ лопаток и дисков роторов дымососов зависит от сорта сжигаемого топлива и качества работы золоуловительных установок. Плохое действие золоуловителей ведет к их интенсивному износу, уменьшает прочность и может стать причиной разбалансировки и вибраций машин, а износ кожухов ведет к неплотностям, пылению и ухудшению тяги.
Снижение интенсивности эрозионного износа деталей достигается ограничением максимальной частоты вращения ротора машины. Для дымососов частота вращения принимается около 700 об/мин, но не более 980.
Эксплуатационными методами уменьшения износа являются: работа с минимальным избытком воздуха в топке, устранение присосов воздуха в топке и газоходах и мероприятия по снижению потерь от механического недожога топлива. Это уменьшает скорости дымовых газов и концентрацию в них золы и уноса.

В тягодутьевых машинах применяются подшипники качения и скольжения. Для подшипников скольжения применяются вкладыши двух конструкций:

  • -самоустанавливающиеся с шаровой и
  • -с цилиндрической (жесткие) опорной поверхностью посадки вкладыша в корпус.

Повреждения подшипников могут быть из-за недосмотра персонала, дефектов их изготовления, неудовлетворительного ремонта и сборки, а особенно -плохой смазки и охлаждения.
Ненормальная работа подшипников определяется по повышению температуры (выше 650С) и характерному шуму или стуку в корпусе.

Основными причинами повышения температуры подшипников являются:

  • -загрязнение, недостаточное количество или вытекание смазки из подшипников, несоответствие смазочного материала условиям работы тягодутьевых машин (слишком густое или жидкое масло), чрезмерное заполнение смазкой подшипников качения;
  • -отсутствие в корпусе подшипника осевых зазоров, необходимых для компенсации температурного удлинения вала;
  • -малый посадочный радиальный зазор подшипника;
  • -малый рабочий радиальный зазор подшипника;
  • -заедание смазочного кольца в подшипниках скольжения при очень высоком уровне масла, которое препятствует свободному вращению кольца, или повреждение кольца;
  • -износ и повреждение подшипников качения:
    • дорожки и тела качения выкрашиваются,
    • трещина на кольцах подшипника,
    • внутреннее кольцо подшипника неплотно сидит на валу,
    • смятие и поломка роликов, сепараторов, что сопровождается иногда стуком в подшипнике;
  • -нарушение охлаждения подшипников, имеющих водяное охлаждение;
  • -разбалансировка рабочего колеса и вибрация, резко ухудшающие условия нагрузки подшипников.

К дальнейшей работе подшипники качения становятся непригодными из-за коррозии, абразивного и усталостного износа, разрушения сепараторов. Быстрый износ подшипника происходит при наличии отрицательного или нулевого рабочего радиального зазора вследствие разности температур вала и корпуса, неправильно выбранного начального радиального зазора или неверно выбранной и выполненной посадки подшипника на вал или в корпус и др.

Во время монтажа или ремонта тягодутьевых машин нельзя применять подшипники, если у них обнаружены:

  • -трещины на кольцах, сепараторах и телах качения;
  • -забоины, вмятины и шелушение на дорожках и телах качения;
  • -сколы на кольцах, рабочих бортах колец и телах качения;
  • -сепараторы с разрушенными сваркой и клепкой, с недопустимыми провисанием и неравномерным шагом окон;
  • -цвета побежалости на кольцах или телах качения;
  • -продольные лыски на роликах;
  • -чрезмерно большой зазор или тугое вращение;
  • -остаточный магнетизм.

При выявлении указанных дефектов подшипники следует заменить новыми.

Чтобы при демонтаже не повредить подшипники качения, необходимо соблюдать следующие требования:

  • -усилие должно передаваться через кольцо;
  • -осевое усилие должно совпадать с осью вала или корпуса;
  • -удары по подшипнику категорически запрещены, их следует передавать через выколотку из мягкого металла.

Применяют прессовый, термический и ударный способы монтажа и демонтажа подшипников. При необходимости можно применять указанные способы в сочетании.

При разборке подшипниковых опор контролируют:

  • -состояние и размеры посадочных поверхностей корпуса и вала;
  • -качество установки подшипника,
  • -центровку корпуса относительно вала;
  • -радиальный зазор и осевую игру,
  • -состояние тел качения, сепараторов и колец;
  • -легкость и отсутствие шума при вращении.

Наибольшие потери возникают при размещении в непосредственной близости от выходного патрубка машины какого-либо поворота. Непосредственно за выходным патрубком машины для снижения потерь напора следует устанавливать диффузор. При угле раскрытия диффузора больше 200 ось диффузора должна быть отклонена в сторону вращения рабочего колеса так, чтобы угол между продолжением обечайки машины и наружной стороной диффузора был около 100. При угле раскрытия меньше 200 диффузор следует выполнять симметричным или с наружной стороной, являющейся продолжением обечайки машины. Отклонение оси диффузора в обратную сторону приводит к увеличению его сопротивления. В плоскости, перпендикулярной плоскости рабочего колеса, диффузор выполняется симметричным.
Производительность вентилятора ухудшается при отклонении от проектных углов установки лопаток крыльчатки и при дефектах их изготовления. Необходимо учесть. что при наплавлении твердыми сплавами или усилении лопатки приваркой накладок с целью удлинения срока их службы может произойти ухудшение характеристики дымососа: к таким же последствиям приводит чрезмерный износ и неправильное противоизносное бронирование корпуса дымососа (уменьшение проходных сечений, увеличение внутренних сопротивлений). К дефектам газовоздушного тракта относятся - неплотности, присосы холодного воздуха через обдувочные лючки и места заделки их в обмуровку, лазы в обмуровке котла. неработающие горелки, проходы постоянных обдувочных устройств через обмуровку котла и хвостовые поверхности нагрева, гляделки в топочной камере и запальные отверстия для горелок и т.п.. В результате чего увеличиваются объемы дымовых газов и соответственно сопротивление тракта. Газовое сопротивление увеличивается также при загрязнении тракта очаговыми остатками и при нарушении взаимного расположения змеевиков пароперегревателя и экономайзера (провисания, переплетения и т.п.). Причиной внезапного роста сопротивления может быть обрыв или заклинивание в прикрытом положении заслонки или направляющего аппарата дымососа.
Возникновение неплотности в газовом тракте вблизи дымососа (открытый лаз, поврежденный взрывной клапан и т.п.) ведет к снижению разрежения перед дымососом и увеличению его производительности. Сопротивление тракта до места неплотности падает, так как дымосос работает в большей мере на подсос воздуха из этих мест, где сопротивление значительно меньше, чем в основном тракте, и количество дымовых газов, забираемых им из тракта, снижается.
Характеристика машины ухудшается при увеличенном перетоке газов через зазоры между входным патрубком и рабочим колесом. Нормально диаметр патрубка в свету должен быть на 1-1,5% меньше диаметра входа в рабочее колесо; осевой и радиальный зазоры между кромкой патрубка и входом в колесо не должно превышать 5 мм; смещение осей их отверстий не должно быть больше 2-3 мм.
В эксплуатации необходимо своевременно устранять неплотности в местах прохода валов и у корпусов из-за их износа, в прокладках разъемов и т.п.
При наличии обводного короба дымососа (прямого хода) с неплотной заслонкой - в нем возможен обратный переток выбрасываемых дымовых газов, во всасывающий патрубок дымососа.
Рециркуляция дымовых газов возможна также при установке двух дымососов на котел: через оставленный дымосос - к другому, работающему. При параллельной работе двух дымососов (двух вентиляторов) надо следить за тем, чтобы все время была одинаковой их нагрузка, которую контролируют по показаниям амперметров электродвигателей.

В случае уменьшения производительности и напора во время работы тягодутьевых машин следует проверить:

  • -направление вращения вентилятора (дымососа);
  • -состояние лопаток рабочего колеса (износ и точность наплавки или установки накладок);
  • -по шаблону - правильность установки лопаток в соответствии с их проектным положением и углами входа и выхода (для новых рабочих колес или после замены лопаток);
  • -соответствие рабочим чертежам конфигурации улитки и стен корпуса, языка и зазоров между конфузором; точность установки и полноту открытия заслонок до и после вентилятора (дымососа);
  • -разрежение перед дымососом, напор после него и напор после дутьевого вентилятора и сравнить с прежним;
  • -плотность в местах прохода валов машины, при выявлении неплотности в них и в воздухопроводе устранить ее;
  • -плотность воздухоподогревателя.

Надежность работы тягодутьевых машин в значительной мере зависит от тщательной приемки механизмов, поступающих на монтажную площадку, качества монтажа, профилактического ремонта и правильной эксплуатации, а также от исправности контрольно-измерительных приборов для измерения температуры уходящих газов, температуры нагрева подшипников, электродвигателя и т.д.

Для обеспечения безаварийной и надежной работы вентиляторов и дымососов необходимо:

  • систематически следить за смазкой и температурой подшипников, не допускать загрязнения смазочных масел;
  • заполнять подшипники качения консистентной смазкой не более чем на 0,75, а при больших скоростях тягодутьевого механизма - не более чем на 0,5 объема корпуса подшипника во избежание их нагревания. Уровень масла должен находиться у центра нижнего ролика или шарика при заполнении подшипников качения жидкой смазкой. Масляную ванну подшипников с кольцевой смазкой следует заполнять до красной черты на масломерном стекле, указывающем нормальный уровень масла. С целью удаления избытка масла при переполнении корпуса выше допустимого уровня корпус подшипника должен быть оборудован сливной трубкой;
  • обеспечить непрерывное водяное охлаждение подшипников дымососов;
  • для возможности контроля слив воды, охлаждающей подшипники, должен осуществляться через открытые трубки и сливные воронки.

При разборке и сборке подшипников скольжения, замене деталей многократно контролируются такие операции:

  • а)проверка центровки корпуса по отношению к валу и плотности прилегания нижнего полувкладыша;
  • б)замер верхнего, боковых зазоров вкладыша и натяга вкладыша крышкой корпуса;
  • в)состояние баббитовой поверхности заливки вкладыша (определяется простукиванием латунным молотком, звук должен быть чистым). Общая площадь отслаивания допускается не более 15% при отсутствии трещин в местах отслаивания. В районе упорного бурта отслаивание не допускается. Разность диаметров по различным сечениям вкладыша - не более 0,03 мм. Во вкладышах подшипника на рабочей поверхности проверяют отсутствие зазоров, рисок, забоин, раковин, пористостей, инородных включений. Эллиптичность у смазочных колец разрешается не более О,1 мм, а неконцентричность в местах разъема - не более 0,05 мм.

Обслуживающему персоналу следует:

  • следить по приборам, чтобы температура уходящих газов не превышала расчетную;
  • производить по графику осмотр и текущий ремонт дымососов и вентиляторов со сменой масла и промывкой подшипников, если это требуется, устранением неплотностей, проверкой правильности и легкости открытия шиберов и направляющих аппаратов, их исправности и т.д.;
  • закрывать всасывающие отверстия дутьевых вентиляторов сетками
  • производить тщательную приемку запасных частей, поступающих для замены во время капитального и текущего ремонтов тягодутьевых машин (подшипников, валов, крыльчаток и т.п.);
  • производить опробование тягодутьевых машин после монтажа и капитального ремонта, а также приемку отдельных узлов в процессе монтажа (фундаменты, опорные рамы и т.п.);
  • не допускать приемку в эксплуатацию машин с вибрацией подшипников 0,16 мм при частоте вращения 750 об/мин, 0,13 мм - при 1000 об/мин и 0,l мм- при 1500 об/мин.

Вибродиагностика вентиляторов – эффективный метод неразрушающего контроля, позволяющий своевременно выявить зарождающиеся и выраженные дефекты вентиляторов и, тем самым, предупредить возникновение аварийных ситуаций, прогнозировать остаточный ресурс деталей, и сократить затраты на обслуживание и ремонт вентиляторов (вент. агрегатов).

  1. Характерные частоты вибрации вентиляторов
  • Основной составляющей вибрации ротора с рабочим колесом является гармоническая составляющая с частотой вращения ротора , обусловленная либо дисбалансом ротора с рабочим колесом, либо гидродинамической/аэродинамической неуравновешенностью рабочего колеса. (Гидродинамическая/аэродинамическая неуравновешенность рабочего колеса может возникнуть из-за конструктивных особенностей лопаток, создающих подъемную силу, не равную нулю в радиальном направлении).
  • Второй по значимости составляющей вибрации вентилятора является лопаточная (лопастная) составляющая, обусловленная взаимодействием рабочего колеса с неоднородным воздушным потоком. Частота данной составляющей определяется как: f л =N*f вр , где N – число лопаток вентилятора
  • В случае неустойчивого вращения ротора в подшипниках качения/скольжения, возможны автоколебания ротора на половине оборотной частоты или меньше, и, в результате, в спектре вибрации появляются гармонические составляющие на частоте автоколебаний ротора.
  • При обтекании лопаток потоком возникают турбулентные пульсации давления, которые возбуждают случайную вибрацию рабочего колеса и вентилятора в целом. Мощность данной составляющей случайной вибрации может периодически модулироваться частотой вращения рабочего колеса, лопастной частотой или частотой автоколебаний ротора.
  • Более сильным источником случайной вибрации (по сравнению с турбулентностью) является кавитация, которая также возникает при обтекании лопастей потоком. Мощность данной составляющей случайной вибрации также модулируется частотой вращения рабочего колеса, лопастной частотой или частотой автоколебаний ротора.
  1. Вибродиагностические признаки дефектов вентиляторов
Таблица 1. Таблица диагностических признаков вентиляторов
  1. Приборы для вибродиагностики вентиляторов
Вибродиагностика вентиляторов проводится с помощью стандартных методов анализа спектров вибрации и спектров огибающей высокочастотной вибрации. Точки измерения спектров, также как и при виброконтроле вентиляторов, выбираются на подшипниковых опорах. В качестве прибора вибродиагностики и виброконтроля специалисты компании «БАЛТЕХ» рекомендуют использовать 2-х канальный виброанализатор BALTECH VP-3470-Ex. С его помощью можно получить не только качественные автоспектры и спектры огибающей и определить общий уровень вибрации, но и провести балансировку вентилятора в собственных опорах. Возможность балансировки (до 4-х плоскостей) является важным преимуществом анализатора BALTECH VP-3470-Ех, так как основной источник повышенных вибраций вентилятора – неуравновешенность вала с рабочим колесом.
  1. Основные настройки анализатора при вибродиагностике вентиляторов
  • Верхняя граничная частота спектра огибающей определяется из соотношения: f гр =2f л +2f вр =2f вр (N+1) Пусть, например, частота вращения рабочего колеса f вр =9,91 Гц, число лопаток N =12, тогда f гр =2*9,91(12+1) =257, 66 Гц и в настройках анализатора BALTECH VP-3470 выбираем ближайшее значение 500Гц в сторону увеличения
  • При определении количества частотных полос в спектре придерживаются правила, чтобы первая гармоника на частоте вращения попала не менее, чем в 8-ю полосу. Из этого условия определяем ширину единичной полосы Δf=f вр /8=9,91/8=1,24Гц. Отсюда определяем необходимое число полос n для спектра огибающей: n=f гр /Δf=500/1,24=403 Выбираем ближайшее в сторону увеличения число полос в настройках анализатора BALTECH VP-3470 , а именно, – 800 полос. Тогда окончательная ширина одной полосы Δf=500/800=0,625Гц.
  • Для автоспектров граничная частота должна быть не менее 800 Гц, тогда количество полос для автоспектров n=f гр /Δf=000/0,625=1280 . Выбираем ближайшее в сторону увеличения число полос в настройках анализатора BALTECH VP-3470 , а именно, – 1600 полос.
  1. Пример спектров дефектных вентиляторов Трещина на ступице колеса центробежного вентилятора
    • точка измерений: на подшипниковой опоре электродвигателя со стороны рабочего колеса в вертикальном, осевом и поперечном направлении;
    • частота вращения f вр =24,375Гц ;
    • диагностические признаки: очень высокая осевая вибрация на частоте вращения f вр и доминирование второй гармоники 2f вр в поперечном направлении; присутствие менее выраженных гармоник большей кратности, вплоть до седьмой (см.рис.1 и 3).




Если квалификация ваших сотрудников не позволяет провести качественную вибродиагностику вентиляторов, то рекомендуем направить их на обучающий курс в Учебный центр переподготовки кадров и повышения квалификации компании «БАЛТЕХ», а вибродиагностику вашего оборудования доверить сертифицированным специалистам (ОТС) нашего предприятия, имеющим огромный практический опыт виброналадки и вибродиагностики динамического (роторного) оборудования (насосов, компрессоров, вентиляторов, электродвигателей, редукторов, подшипников качения, подшипников скольжения).

Повышенная вибрация вентилятора является одной из его главных «бед», вызывая преждевременный выход из строя узлов, деталей, рабочего колеса, лопаток, подшипниковых опор, муфты, разрушение фундамента и самого вентилятора в целом.

Причины вибрации вентиляторов:

  • дисбаланс вала;
  • нарушение центровки привода;
  • износ или повреждения подшипников;
  • дефекты электромагнитной части привода (электродвигателя);
  • дефекты зубчатых передач (если есть промежуточный редуктор);
  • влияние аэрогидродинамических сил;
  • резонансные явления и др.

Уровень вибрации вентиляторов наиболее точно отражает текущее техническое состояние вентилятора, качество его сборки и установки. Иными словами, контролируя уровень вибрации вентилятора, можно выявить все вышеназванные огрехи и принять своевременные меры по их устранению, обеспечивая безаварийную работу вентилятора.

Методика измерений вибрации промышленных вентиляторов мощностью до 300 кВт регламентируется , а более мощных – ГОСТ ИСО 10816-3 . В данной статье мы рассмотрим промышленные вентиляторы мощностью до 300 кВт и методику контроля их вибрационного состояния с целью определения некоторого базового уровня вибрации и тенденции ее изменения.

Прежде всего, отметим, что все промышленные вентиляторы мощностью до 300 кВт классифицируются по уровню допустимой вибрации и дисбалансу на BV-категории (см. табл.1):

В соответствии с требованиями ГОСТ 31350-2007 (ИСО 14694:2003) измерения вибрации проводятся на подшипниковых опорах в направлениях, перпендикулярных оси вращения вала. Рекомендуемые точки измерения приведены на рис. 1.


а) для горизонтального осевого вентилятора


б) для горизонтального радиального вентилятора одностороннего всасывания

в) для горизонтального радиального вентилятора двухстороннего всасывания

г) для вертикального осевого вентилятора

Рисунок 1. Точки и направления измерений вибрации вентиляторов

Измерения абсолютной вибрации на опорах подшипников производятся с помощью виброметров BALTECH VP-3410 (серия «VibroPoint») с контактными датчиками инерционного типа – пьезоакселерометрами (датчики ускорения). При проведении измерений следует четко соблюдать стандартные требования к надежности крепления, направлению установки, и отсутствию существенного влияния массы и размеров датчика на результаты измерений. В целом, допускается суммарная неопределенность измерений в пределах ± 10% от измеряемого параметра. Виброметры компании «БАЛТЕХ» универсальные и позволяют в зависимости от требований производителя вентиляторов измерять три параметра вибрации (виброперемещение, виброскорость или виброускорение).

Допустимые пределы вибрации вентиляторов в период эксплуатации приведены в Таблице 2. Следует отметить, что за счет массы и жесткости системы опоры на месте эксплуатации, данные значения несколько выше значений вибрации при заводских испытаниях.

Таблица 2. Предельные значения вибрации при эксплуатации вентиляторов.

Уровню «Пуск в эксплуатацию» должны соответствовать все новые вентиляторы. По мере наработки и износа деталей, уровень вибрации вентилятора неизбежно увеличивается и при достижении уровня «Предупреждение» необходимо исследовать причины повышения вибрации и принять меры по их устранению. Работа вентилятора в таком состоянии должна быть ограничена по времени до проведения ремонтных работ.

При достижении уровня «Останов» вентилятор должен быть немедленно остановлен и приняты меры по устранению источников критического уровня вибраций. В противном случае возможны серьезные повреждения, ведущие к разрушению вентилятора. В целом же, на основе статистики эксплуатации вентиляторного оборудования, считается необходимым принятие мер по устранению источников повышенных вибрации, когда ее уровень превышает базовое значение в 1,6 раза или на 4 дБ.

При виброконтроле вентилятора важно обращать особое внимание на скачкообразное изменение уровня вибрации со временем. Скачок вибрации является явным свидетельством возникновения каких-то неполадок и в данном случае необходимо провести осмотр вентилятора и устранить обнаруженные недостатки.

В некоторых случаях дополнительно проводят измерение перемещения вала относительно корпуса подшипника с помощью бесконтактных датчиков вибрации – индукционных, вихретоковых и др. В Таблице 3 приведены допустимые значения перемещения вала, которые следует понимать только как рекомендуемые – на самом же деле данные значения могут быть и другими в зависимости от типа и размеров подшипника скольжения, величине и направления нагрузки и т.д.

Таблица 3. Предельное перемещение вала внутри подшипника

Виброконтроль и вибромониторинг вентиляторов наиболее удобно проводить с помощью переносного портативного прибора «ПРОТОН-Баланс-II ». Его основное преимущество перед простыми виброметрами заключается в возможности проведения балансировки вентиляторов в собственных опорах в соответствии с требованиями ГОСТ 31350-2007 (ИСО 14694:2003) , а также контроля температуры подшипниковых узлов и контроля частоты оборотов вентилятора.

Для обучения методике проведения измерений вибрации вентиляторов и получения навыков работы с виброметром-балансировщиком «ПРОТОН-Баланс-II » и другими виброметрами компании «БАЛТЕХ», рекомендуется пройти обучение на курсе ТОР-103 «Основы вибродиагностики. Вибрация вентиляторов ГОСТ » в Учебном центре повышения квалификации нашей компании в Санкт-Петербурге, в Астане или в Любеке (Германия).