Домой / Оборудование / Принцип работы тиристора простым языком. Современные силовые запираемые тиристоры. Устройство и виды полупроводниковых приборов

Принцип работы тиристора простым языком. Современные силовые запираемые тиристоры. Устройство и виды полупроводниковых приборов

Тиристоры выступают твердотельными электронными устройствами, обладающими высокой скоростью коммутации. Эти приборы допустимо использовать для управления всевозможными маломощными электронными компонентами. Однако наряду с маломощной электроникой, посредством тиристоров успешно управляется силовое оборудование. Рассмотрим классические схемы включения тиристора под управление достаточно высокими нагрузками, например, электролампами, электромоторами, электрическими нагревателями и т. п.

Включение полупроводника в открытое состояние возможно путём подачи импульса пускового тока небольшой величины на управляющий электрод У.

Когда тиристор пропускает ток нагрузки в прямом направлении, электрод анода A является положительным по отношению к электроду катода K, с точки зрения регенеративной фиксации.

Как правило, триггерный импульс для электрода У должен иметь длительность в несколько микросекунд. Однако чем длиннее импульс, тем быстрее происходит внутренний лавинный пробой. Также увеличивается время открывания перехода. Но максимальный ток затвора превышать не допускается.


Схема 1: КН1, КН2 — кнопки нажимные без фиксации; Л1 — нагрузка в виде лампы накаливания 100 Вт; R1, R2 — резисторы постоянные 470 Ом и 1 кОм

Эта простая схема включения/выключения применяется для управления лампой накаливания. Между тем схему вполне допустимо использовать в качестве коммутатора электродвигателя, нагревателя и любой другой нагрузки, рассчитанной на питание постоянным напряжением.

Здесь тиристор имеет прямое смещённое состояние перехода и включается в режим короткого замыкания нормально разомкнутой кнопкой КН1.

Эта кнопка соединяет управляющий электрод У с источником питания через резистор R1. Если значение R1 установить слишком высоким относительно питающего напряжения, устройство не сработает.

Стоит только нажать кнопку КН1, тиристор переключается в состояние прямого проводника и остаётся в этом состоянии независимо от дальнейшего положения кнопки КН1. При этом токовая составляющая нагрузки показывает большее значение, чем ток фиксации тиристора.

Преимущества и недостатки использования тиристора

Одним из основных преимуществ использования этих полупроводников в качестве переключателя видится очень высокий коэффициент усиления по току. Тиристор — это устройство, фактически управляемое током.

Катодный резистор R2 обычно включается с целью уменьшения чувствительности электрода У и увеличения возможностей соотношения напряжение-ток, что предотвращает ложное срабатывание устройства.

Когда тиристор защелкнется и останется в состоянии «включено», сбросить это состояние возможно только прерыванием питания или уменьшения анодного тока до нижнего значения удержания.

Поэтому логично использовать нормально замкнутую кнопку КН2, чтобы разомкнуть цепь, уменьшая до нуля ток, протекающий через тиристор, заставляя прибор перейти в состояние «выключено».

Однако схема имеет также недостаток. Механический нормально замкнутый переключатель КН2 должен быть достаточно мощным — соответствовать мощности всей схемы.

В принципе, можно было бы просто заменить полупроводник мощным механическим выключателем. Один из способов преодолеть проблему с мощностью — подключить коммутатор параллельно тиристору.


Схема 2: КН1, КН2 — кнопки нажимные без фиксации; Л1 — лампа накаливания 100 Вт; R1, R2 — резисторы постоянные 470 Ом и 1 кОм

Доработка схемы — включение нормально разомкнутого переключателя малой мощности параллельно переходу А-К, даёт следующий эффект:

  • активация КН2 создаёт «КЗ» между электродами А и К,
  • уменьшается ток фиксации до минимального значения,
  • устройство переходит в состояние «выключено».

Тиристор в цепи переменного тока

При подключении к источнику переменного тока тиристор работает несколько иначе. Это связано с периодическим изменением полярности переменного напряжения.

Поэтому применение в схемах с питанием переменным напряжением автоматически будет приводить к состоянию обратного смещения перехода. То есть в течение половины каждого цикла прибор будет находиться в состоянии «отключено».

Для варианта с переменным напряжением схема тиристорного запуска аналогична схеме с питанием постоянным напряжением. Разница незначительная — отсутствие дополнительного переключателя КН2 и дополнение диода D1.

Благодаря диоду D1, предотвращается обратное смещение по отношению к управляющему электроду У.

Во время положительного полупериода синусоидальной формы сигнала, устройство смещено вперед, но при выключенном переключателе КН1, к тиристору подводится нулевой ток затвора и прибор остается «выключенным».

В отрицательном полупериоде устройство получает обратное смещение и также останется «выключенным», независимо от состояния переключателя КН1.


Схема 3: КН1 — переключатель с фиксацией; D1 — диод любой под высокое напряжение; R1, R2 -резисторы постоянные 180 Ом и 1 кОм, Л1 — лампа накаливания 100 Вт

Если переключатель КН1 замкнуть, вначале каждого положительного полупериода полупроводник останется полностью «выключенным».

Но в результате достижения достаточного положительного триггерного напряжения (возрастания тока управления) на электроде У, тиристор переключится в состояние «включено».

Фиксация состояния удержания остаётся стабильной при положительном полупериоде и автоматически сбрасывается, когда положительный полупериод заканчивается. Очевидно, т.к. здесь ток анода падает ниже текущего значения.

Во время следующего отрицательного полупериода, устройство будет полностью «отключено» до следующего положительного полупериода. Затем процесс вновь повторяется.

Получается, нагрузка имеет только половину доступной мощности источника питания. Тиристор действует как и проводит переменный ток лишь во время положительных полуциклов, когда переход смещен вперед.

Управление половинной волной

Фазовое управление тиристором является наиболее распространенной формой управления мощностью переменного тока.

Пример базовой схемы управления фазой показан ниже. Здесь напряжение затвора тиристора формируется цепочкой R1C1 через триггерный диод D1.

Во время положительного полупериода, когда переход смещен вперед, конденсатор C1 заряжается через резистор R1 от напряжения питания схемы.

Управляющий электрод У активируются только тогда, когда уровень напряжения в точке «x» вызывает срабатывание диода D1. Конденсатор C1 разряжается на управляющий электрод У, устанавливая прибор в состояние «включено».

Длительность времени положительной половины цикла, когда открывается проводимость, контролируется постоянной времени цепочки R1C1, заданной переменным резистором R1.


Схема 4: КН1 — переключатель с фиксацией; R1 — переменный резистор 1 кОм; С1 — конденсатор 0,1 мкф; D1 — диод любой на высокое напряжение; Л1 — лампа накаливания 100 Вт; П — синусоида проводимости

Увеличение значения R1 приводит к задержке запускающего напряжения, подаваемого на тиристорный управляющий электрод, что, в свою очередь, вызывает отставание по времени проводимости устройства.

В результате доля полупериода, когда устройство проводит, может регулироваться в диапазоне 0 -180º. Это означает, что половинная мощность, рассеиваемая нагрузкой (лампой), поддаётся регулировке.

Существует масса способов достижения полноволнового управления тиристорами. Например, можно включить один полупроводник в схему диодного мостового выпрямителя. Этим методом легко преобразовать переменную составляющую в однонаправленный ток тиристора.

Однако более распространенным методом считается вариант использования двух тиристоров, соединенных инверсной параллелью.

Самым практичным подходом видится применение одного симистора. Этот полупроводник допускает переход в обоих направлениях, что делает симисторы более пригодными для схем переключения переменного тока.

Полный технический расклад тиристора

— устройство, обладающее свойствами полупроводника, в основе конструкции которого лежит монокристаллический полупроводник, имеющий три или больше p-n-переходов.

Его работа подразумевает наличие двух стабильных фаз:

  • «закрытая» (уровень проводимости низкий);
  • «открытая» (уровень проводимости высоки).

Тиристоры — устройства, выполняющие функции силовых электронных ключей. Другое их наименование — однооперационные тиристоры. Данный прибор позволяет осуществлять регуляцию воздействия мощных нагрузок посредством незначительных импульсов.

Согласно вольт-амперной характеристике тиристора, увеличение силы тока в нём будет провоцировать снижение напряжения, то есть появится отрицательное дифференциальное сопротивление.

Кроме того, эти полупроводниковые устройства могут объединять цепи с напряжением до 5000 Вольт и силой тока до 5000 Ампер (при частоте не более 1000 Гц).

Тиристоры с двумя и тремя выводами пригодны для работы как с постоянным, так и с переменным током. Наиболее часто принцип их действия сравнивается с работой ректификационного диода и считается, что они являются полноценным аналогом выпрямителя, в некотором смысле даже более эффективным.

Разновидности тиристоров отличаются между собой:

  • Способом управления.
  • Проводимостью (односторонняя или двусторонняя).

Общие принципы управление

В структуре тиристора имеется 4 полупроводниковых слоя в последовательном соединении (p-n-p-n). Контакт, подведённый к наружному p-слою — анод, к наружному n-слою — катод. Как результат, при стандартной сборке в тиристоре максимально может быть два управляющих электрода, которые крепятся к внутренним слоям. Соответственно подключённому слою проводники, по типу управления устройства делятся на катодные и анодные. Чаще используется первая разновидность.

Ток в тиристорах течёт в сторону катода (от анода), поэтому соединение с источником тока осуществляет между анодом и плюсовым зажимом, а также между катодом и минусовым зажимом.

Тиристоры с управляющим электродом могут быть:

  • Запираемыми;
  • Незапираемыми.

Показательным свойством незапираемых приборов является отсутствие у них реакции на сигнал с управляющего электрода. Единственный способ закрыть их — снизить уровень протекающего сквозь них тока так, чтобы он уступал силе тока удержания.

Управляя тиристором следует учитывать некоторые моменты. Устройство данного типа сменяет фазы работы с «выключен» на «включён» и обратно скачкообразно и только при условии внешнего воздействия: при помощи тока (манипуляции с напряжением) или фотонов (в случаях с фототиристором).

Чтобы разобраться в данном моменте необходимо помнить, что у тиристора преимущественно имеется 3 вывода (тринистор): анод, катод и управляющий электрод.

Уэ (управляющий электрод) как раз таки и отвечает за то, чтобы включать и выключать тиристор. Открытие тиристора происходит при условии, что приложенное напряжение между А (анодом) и К (катодом) становится равным или превосходит объём напряжения работы тринистора. Правда, во втором случае потребуется воздействие импульса положительной полярности между Уэ и К.

При постоянной подаче питающего напряжения тиристор может быть открыт бесконечно долго.

Чтобы перевести его в закрытое состояние, можно:

  • Снизить уровень напряжения между А и К до нуля;
  • Понизить значение А-тока таким образом, чтобы показатели силы тока удержания оказались больше;
  • Если работа цепи построена на действии переменного тока, выключение прибора произойдёт без постороннего вмешательства, когда уровень тока сам снизится до нулевого показания;
  • Подать запирающее напряжение на Уэ (актуально только в отношении запираемых разновидностей полупроводниковых устройств).

Состояние закрытости тоже длится бесконечно долго, пока не возникнет запускающий импульс.

Конкретные способы управления

  • Амплитудный .

Представляет собой подачу положительного напряжения изменяющейся величины на Уэ. Открытие тиристора происходит, когда величины напряжения довольно, чтобы пробиться через управляющий переход тока спрямления (Iспр.). При помощи изменения величины напряжения на Уэ, появляется возможность изменения времени открытия тиристора.

Главный недочёт этого метода — сильное влияние температурного фактора. Кроме того, для каждой разновидности тиристора потребуется резистор другого вида. Этот момент не добавляет удобства в эксплуатации. Помимо этого время открытия тиристора возможно корректировать лишь пока длится первая 1/2 положительного полупериода сети.

  • Фазовый.

Заключается в смене фазы Uупр (в соотношении с напряжением на аноде). При этом применяется фазовращательный мост. Главный минус — малая крутизна Uупр, поэтому стабилизировать момент открытия тиристора можно лишь ненадолго.

  • Фазово-импульсный .

Рассчитан на преодоление недостатков фазового метода. С этой целью на Уэ подаётся импульс напряжения с крутым фронтом. Данный подход в настоящее время наиболее распространён.

Тиристоры и безопасность

Из-за импульсности своего действия и наличия обратного восстановительного тока тиристоры очень сильно повышает риск перенапряжения в работе прибора. Помимо этого опасность перенапряжения в зоне полупроводника высока, если в других частях цепи напряжения нет вовсе.

Поэтому во избежание негативных последствий принято использовать схемы ЦФТП. Они препятствуют появлению и удержанию критический значений напряжения.

Двухтранзисторная модель тиристора

Из двух транзисторов вполне можно собрать динистор (тиристор с двумя выводами) или тринистор (тиристор с тремя выводами). Для этого один из них должен иметь p-n-p-проводимость, другой — n-p-n-проводимость. Выполнены транзисторы могут быть как из кремния, так и из германия.

Соединение между ними осуществляется по двум каналам:

  • Анод от 2-го транзистора + Управляющий электрод от 1-го транзистора;
  • Катод от 1-го транзистора + Управляющий электрод от 2-го транзистора.

Если обойтись без использования управляющих электродов, то на выходе получится динистор.

Совместимость выбранных транзисторов определяется по одинаковому объёму мощности. При этом показания тока и напряжения должны быть обязательно больше требуемых для нормального функционирования прибора. Данные по напряжению пробоя и току удержания зависят от конкретных качеств использованных транзисторов.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на , буду рад если вы найдете на моем еще что-нибудь полезное.

Создание полупроводниковых приборов для силовой электроники началось в 1953 г. когда стало возможным получение кремния высокой чистоты и формирование кремниевых дисков больших размеров. В 1955 г. был впервые создан полупроводниковый управляемый прибор, имеющий четырёхслойную структуру и получивший название "тиристор".

Он включался подачей импульса на электрод управления при положительном напряжении между анодом и катодом. Выключение тиристора обеспечивается снижением протекающего через него прямого тока до нуля, для чего разработано множество схем индуктивно-ёмкостных контуров коммутации. Они не только увеличивают стоимость преобразоваеля, но и ухудшают его массо-габаритные показатели,снижают надёжность.

Поэтому одновременно с созданием тиристора начались исследования, направленные на обеспечение его выключения по управляющему электроду. Главная проблема состояла в обеспечении быстрого рассасывания носителей зарядов в базовых областях.

Первые подобные тиристоры появились в 1960 г. в США. Они получили название Gate Turn Off (GTO). В нашей стране они больше известны как запираемые или выключаемые тиристоры.

В середине 90-х годов был разработан запираемый тиристор с кольцевым выводом управляющего электрода. Он получил название Gate Commutated Thyristor (GCT) и стал дальнейшем развитием GTO-технологии.

Тиристоры GTO

Устройство

Запираемый тиристор - полностью управляемый полупроводниковый прибор, в основе которого классическая четырёхслойная структура. Включают и выключают его подачей положительного и отрицательного импульсов тока на электрод управления. На Рис. 1 приведены условное обозначение (а) и структурная схема (б) выключаемого тиристора. Подобно обычному тиристору он имеет катод K, анод А, управляющий электрод G. Различия в структурах приборов заключается в ином расположении горизонтальных и вертикальных слоёв с n- и р-проводимостями.

Наибольшему изменению подверглось устройство катодного слоя n. Он разбит на несколько сотен элементарных ячеек, равномерно распределённых по площади и соединённых параллельно. Такое исполнение вызвано стремлением обеспечить равномерное снижение тока по всей площади полупроводниковой структуры при выключении прибора.

Базовый слой p, несмотря на то, что выполнен как единое целое, имеет большое число контактов управляющего электрода (примерно равное числу катодных ячеек), также равномерно распределённых по площади и соединённых параллельно. Базовый слой n выполнен аналогично соответствующему слою обычного тиристора.

Анодный слой p имеет шунты (зоны n), соединяющие n-базу с анодным контактом через небольшие распределённые сопротивления. Анодные шунты применяют в тиристорах, не обладающих обратной блокирующей способностью. Они предназначены для уменьшения времени выключения прибора за счёт улучшения условий извлечения зарядов из базовой области n.

Основное исполнение тиристоров GTO таблеточное с четырёхслойной кремниевой пластиной, зажатой через термокомпенсирующие молибденовые диски между двумя медными основаниями, обладающими повышенной тепло- и электропроводностью. С кремниевой пластиной контактирует управляющий электрод, имеющий вывод в керамическом корпусе. Прибор зажимается контактными поверхностями между двумя половинами охладителей, изолированных друг от друга и имеющих конструкцию, определяемую типом системы охлаждения.

Принцип действия

В цикле работы тиристора GTO различают четыре фазы: включение, проводящее состояние, выключение и блокирующее состояние.

На схематичном разрезе тиристорной структуры (рис. 1,б) нижний вывод структуры анодный. Анод контактирует со слоем p.Затем снизу вверх следуют: базовый слой n, базовый слой p (имеющий вывод управляющего электрода), слой n, непосредственно контактирующий с катодным выводом. Четыре слоя образуют три p-n перехода: j1 между слоями p и n; j2 между слоями n и p;j3 между слоями p и n.

Фаза 1 - включение. Переход тиристорной структуры из блокирующего состояния в проводящее (включение) возможен только при приложении прямого напряжения между анодом и катодом. Переходы j1 и j3 смещаются в прямом направлении и не препятствуют прохождению носителей зарядов. Всё напряжение прикладывается к среднему переходу j2, который смещается в обратном направлении. Около перехода j2 образуется зона, обеднённая носителями зарядов, получившая название- область объёмного заряда. Чтобы включить тиристор GTO, к управляющему электроду и катоду по цепи управления прикладывается напряжение положительной полярности U G (вывод "+" к слою p). В результате по цепи протекает ток включения I G .

Запираемые тиристоры предъявляют жёсткие требования к крутизне фронта dIG/dt и амплитуде IGM тока управления. Через переход j3, кроме тока утечки, начинает протекать ток включения I G . Создающие этот ток электроны будут инжектироваться из слоя n в слой p. Далее часть из них будет перебрасываться электрическим полем базового перехода j2 в слой n.

Одновременно увеличится встречная инжекция дырок из слоя p в слой n и далее в слой p, т.е. произойдёт увеличение тока, созданного неосновными носителями зарядов.

Cуммарный ток, проходящий через базовый переход j2, превышает ток включения, происходит открытие тиристора, после чего носители зарядов будут свободно переходить через все его четыре области.

Фаза 2 - проводящее состояние. В режиме протекания прямого тока нет необходимости в токе управления I G , если ток в цепи анода превышает величину тока удержания. Однако на практике для того, чтобы все структуры выключаемого тиристора постоянно находились в проводящем состоянии, всё же необходимо поддержание тока, предусмотренного для данного температурного режима. Таким образом, всё время включения и проводящего состояния система управления формирует импульс тока положительной полярности.

В проводящем состоянии все области полупроводниковой структуры обеспечивают равномерное движение носителей зарядов (электронов от катода к аноду, дырок - в обратном направлении). Через переходы j1, j2 протекает анодный ток, через переход j3 - суммарный ток анода и управляющего электрода.

Фаза 3 - выключение. Для выключения тиристора GTO при неизменной полярности напряжения U T (см. рис. 3) к управляющему электроду и катоду по цепи управления прикладывается напряжение отрицательной полярности UGR. Оно вызывает ток выключения, протекание которого ведёт к рассасыванию основных носителей заряда (дырок) в базовом слое p. Другими словами, происходит рекомбинация дырок, поступивших в слой p из базового слоя n, и электронов, поступивших в этот же слой по управляющему электроду.

По мере освобождения от них базового перехода j2 тиристор начинает запираться. Этот процесс характеризуется резким уменьшением прямого тока I Т тиристора за короткий промежуток времени до небольшой величины I ТQT (см. рис. 2). Сразу после запирания базового перехода j2 начинает закрываться переход j3, однако за счёт энергии, запасённой в индуктивности цепей управления он ещё некоторое время находится в приоткрытом состоянии.

Рис. 2. Графики изменения тока анода (iT) и управляющего электрода (iG)

После того, как вся энергия, запасённая в индуктивности цепи управления, будет израсходована, переход j3 со стороны катода полностью запирается. С этого момента ток через тиристор равен току утечки, который протекает от анода к катоду через цепь управляющего электрода.

Процесс рекомбинации и, следовательно, выключения запираемого тиристора во многом зависит от крутизны фронта dIGQ/dt и амплитуды I GQ обратного тока управления. Чтобы обеспечить необходимые крутизну и амплитуду этого тока, на управляющий электрод требуется подать напряжение UG, которое не должно превышать величины, допустимой для перехода j3.

Фаза 4 - блокирующее состояние.В режиме блокирующего состояния к управляющему электроду и катоду остаётся приложенным напряжение отрицательной полярности U GR от блока управления. По цепи управления протекает суммарный ток I GR , состоящий из тока утечки тиристора и обратного тока управления, проходящего через переход j3. Переход j3 смещается в обратном направлении. Таким образом, в тиристоре GTO, находящемся в прямом блокирующем состоянии, два перехода (j2 и j3) смещены в обратном направлении и образованы две области пространственного заряда.

Всё время выключения и блокирующего состояния система управления формирует импульс отрицательной полярности.

Защитные цепи

Использование тиристоров GTO, требует применения специальных защитных цепей. Они увеличивают массо-габаритные показатели, стоимость преобразователя, иногда требуют дополнительных охлаждающих устройств, однако являются необходимыми для нормального функционирования приборов.

Назначение любой защитной цепи - ограничение скорости нарастания одного из двух параметров электрической энергии при коммутации полупроводникового прибора. При этом конденсаторы защитной цепи СВ (рис. 3) подключают параллельно защищаемому прибору Т. Они ограничивают скорость нарастания прямого напряжения dUT/dt при выключении тиристора.

Дроссели LE устанавливают последовательно с прибором Т. Они ограничивают скорость нарастания прямого тока dIT/dt при включении тиристора. Значения dUT/dt и dIТ/dt для каждого прибора нормированы, их указывают в справочниках и паспортных данных на приборы.

Рис. 3. Схема защитной цепи

Кроме конденсаторов и дросселей, в защитных цепях используют дополнительные элементы, обеспечивающие разряд и заряд реактивных элементов. К ним относятся: диод DВ, который шунтирует резистор RВ при выключении тиристора Т и заряде конденсатора СВ, резистор RВ, ограничивающий ток разряда конденсатора СВ при включении тиристора Т.

Система управления

Система управления (СУ) содержит следующие функциональные блоки: включающий контур, состоящий из схемы формирования отпирающего импульса и источника сигнала для поддержания тиристора в открытом состоянии; контур формирования запирающего сигнала; контур поддержания тиристора в закрытом состоянии.

Не для всех типов СУ нужны все перечисленные блоки, но контуры формирования отпирающих и запирающих импульсов должна содержать каждая СУ. При этом необходимо обеспечить гальваническую развязку схемы управления и силовой цепи выключаемого тиристора.

Для управления работой выключаемого тиристора применяются две основные СУ, отличающиеся способами подачи сигнала на управляющий электрод. В случае представленном на рис. 4, сигналы, формируемые логическим блоком St, подвергаются гальванической развязке (разделение потенциалов), после чего производится их подача через ключи SE и SA на управляющий электрод выключаемого тиристора Т. Во втором случае сигналы сначала воздействуют на ключи SE (включения) и SA (выключения), находящиеся под тем же потенциалом, что и СУ, затем через устройства гальванической развязки UE и UA подаются на управляющий электрод.

В зависимости от расположения ключей SE и SA различают низкопотенциальные (НПСУ) и высокопотенциальные (ВПСУ, рис. 4) схемы управления.

Рис. 4. Вариант цепи управления

Система управления НПСУ конструктивно проще, чем ВПСУ, однако её возможности ограничены в отношении формирования управляющих сигналов большой длительности, действующих в режиме в режиме протекания через тиристор прямого тока, а также в обеспечении крутизны импульсов управления. Для формирования сигналов большой длительности здесь приходится использовать более дорогие двухтактные схемы.

В ВПСУ высокая крутизна и увеличенная длительность управляющего сигнала достигается проще. Кроме того, здесь сигнал управления используется полностью, в то время как в НПСУ его величина ограничивается устройством разделения потенциалов (например, импульсным трансформатором).

Информационный сигнал - команда на включение или выключение - обычно подаётся на схему через оптоэлектронный преобразователь.

Тиристоры GCT

В середине 90-х годов фирмами "ABB" и "Mitsubishi" был разработан новый вид тиристоров Gate Commutated Thyristor (GCT). Собственно, GCT является дальнейшим усовершенствованием GTO, или его модернизацией. Однако, принципиально новая конструкция управляющего электрода, а также заметно отличающиеся процессы, происходящие при выключении прибора, делают целесообразным его рассмотрение.

GCT разрабатывался как прибор, лишённый недостатков, характерных для GTO, поэтому сначала необходимо остановится на проблемах, возникающих при работе GTO.

Основной недостаток GTO заключается в больших потерях энергии в защитных цепях прибора при его коммутации. Повышение частоты увеличивает потери, поэтому на практике тиристоры GTO коммутируются с частотой не более 250-300 Гц. Основные потери возникают в резисторе RВ (см. рис. 3) при выключении тиристора Т и, следовательно, разряде конденсатора СВ.

Конденсатор СВ предназначен для ограничения скорости нарастания прямого напряжения du/dt при выключении прибора. Сделав тиристор не чувствительным к эффекту du/dt, создали возможность отказаться от снабберной цепи (цепи формирования траектории переключения), что и было реализовано в конструкции GCT.

Особенность управления и конструкции

Основной особенностью тиристоров GCT, по сравнению с приборами GTO, является быстрое выключение, которое достигается как изменением принципа управления, так и совершенствованием конструкции прибора. Быстрое выключение реализуется превращением тиристорной структуры в транзисторную при запирании прибора, что делает прибор не чувствительным к эффекту du/dt.

GCT в фазах включения, проводящего и блокирующего состояния управляется также, как и GTO. При выключении управление GCT имеет две особенности:

  • ток управления Ig равен или превосходит анодный ток Ia (для тиристоров GTO Ig меньше в 3 - 5 раз);
  • управляющий электрод обладает низкой индуктивностью, что позволяет достичь скорости нарастания тока управления dig/dt, равной 3000 А/мкс и более (для тиристоров GTO значение dig/dt составляет 30-40 А/мкс).

Рис. 5. Распределение токов в структуре тиристора GCT при выключении

На рис. 5 показано распределение токов в структуре тиристора GCT при выключении прибора. Как указывалось, процесс включения подобен включению тиристоров GTO. Процесс выключения отличен. После подачи отрицательного импульса управления (-Ig) равного по амплитуде величине анодного тока (Ia), весь прямой ток, проходящий через прибор, отклоняется в систему управления и достигает катода, минуя переход j3 (между областями p и n). Переход j3 смещается в обратном направлении, и катодный транзистор npn закрывается. Дальнейшее выключение GCT аналогично выключению любого биполярного транзистора, что не требует внешнего ограничения скорости нарастания прямого напряжения du/dt и, следовательно, допускает отсутствие снабберной цепочки.

Изменение конструкции GCT связано с тем, что динамические процессы, возникающие в приборе при выключении, протекают на один - два порядка быстрее, чем в GTO. Так, если минимальное время выключения и блокирующего состояния для GTO составляет 100 мкс, для GCT эта величина не превышает 10 мкс. Скорость нарастания тока управления при выключении GCT составляет 3000 А/мкс, GTO - не превышает 40 А/мкс.

Чтобы обеспечить высокую динамику коммутационных процессов, изменили конструкцию вывода управляющего электрода и соединение прибора с формирователем импульсов системы управления. Вывод выполнен кольцевым, опоясывающим прибор по окружности. Кольцо проходит сквозь керамический корпус тиристора и контактирует: внутри с ячейками управляющего электрода; снаружи - с пластиной, соединяющей управляющий электрод с формирователем импульсов.

Сейчас тиристоры GTO производят несколько крупных фирм Японии и Европы: "Toshiba", "Hitachi", "Mitsubishi", "ABB", "Eupec". Параметры приборов по напряжению UDRM: 2500 В, 4500 В, 6000 В; по току ITGQM (максимальный повторяющийся запираемый ток): 1000 А, 2000 А, 2500 А, 3000 А, 4000 А, 6000 А.

Тиристоры GCT выпускают фирмы "Mitsubishi" и "ABB". Приборы рассчитаны на напряжение UDRM до 4500 В и ток ITGQM до 4000 А.

В настоящее время тиристоры GCT и GTO освоены на российском предприятии ОАО "Электровыпрямитель" (г. Саранск).Выпускаются тиристоры серий ТЗ-243, ТЗ-253, ТЗ-273, ЗТА-173, ЗТА-193, ЗТФ-193 (подобен GCT) и др. с диаметром кремниевой пластины до 125 мм и диапазоном напряжений UDRM 1200 - 6000 В и токов ITGQM 630 - 4000 А.

Параллельно с запираемыми тиристорами и для использования в комплекте с ними в ОАО "Электровыпрямитель" разработаны и освоены в серийном производстве быстровостанавливающиеся диоды для демпфирующих (снабберных) цепей и диоды обратного тока, а также мощный импульсный транзистор для выходных каскадов драйвера управления (система управления).

Тиристоры IGCT

Благодаря концепции жёсткого управления (тонкое регулирование легирующих профилей, мезатехнология, протонное и электронное облучение для создания специального распределения контролируемых рекомбинационных центров, технология так называемых прозрачных или тонких эмиттеров, применение буферного слоя в n - базовой области и др.) удалось добиться значительного улучшения характеристик GTO при выключении. Следующим крупным достижением в технологии жёстко управляемых GTO (HD GTO) с точки зрения прибора, управления и применения стала идея управляемых приборов базирующихся на новом "запираемом тиристоре с интегрированным блоком управления (драйвером)" (англ. Integrated Gate-Commutated Thyristor (IGCT)). Благодаря технологии жёсткого управления равномерное переключение увеличивает область безопасной работы IGCT до пределов, ограниченных лавинным пробоем, т.е. до физических возможностей кремния. Не требуется никаких защитных цепей от превышения du/dt. Сочетание с улучшенными показателями потерь мощности позволило найти новые области применения в килогерцовом диапазоне. Мощность, необходимая для управления, снижена в 5 раз по сравнению со стандартными GTO, в основном за счёт прозрачной конструкции анода. Новое семейство приборов IGCT, с монолитными интегрированными высоко мощными диодами было разработано для применения в диапазоне 0,5 - 6 МВ*А. При существующей технической возможности последовательного и параллельного соединения приборы IGCT позволяют наращивать уровень мощности до нескольких сотен мегавольт - ампер.

При интегрированном блоке управления катодный ток снижается до того, как анодное напряжение начинает увеличиваться. Это достигается за счёт очень низкой индуктивности цепи управляющего электрода, реализуемой за счёт коаксиального соединения управляющего электрода в сочетании с многослойной платой блока управления. В результате стало возможным достигнуть значения скорости выключаемого тока 4 кА/мкс. При напряжении управления UGK=20 В. когда катодный ток становится равным нулю, оставшийся анодный ток переходит в блок управления, который имеет в этот момент низкое сопротивление. За счёт этого потребление энергии блоком управления минимизируется.

Работая при "жёстком" управлении, тиристор переходит при запирании из p-n-p-n состояния в p-n-p режим за 1 мкс. Выключение происходит полностью в транзисторном режиме, устраняя всякую возможность возникновения триггерного эффекта.

Уменьшение толщины прибора достигается за счёт использования буферного слоя на стороне анода. Буферный слой силовых полупроводников улучшает характеристики традиционных элементов за счёт снижения их толщины на 30% при том же прямом пробивном напряжении. Главное преймущество тонких элементов - улучшение технологических характеристик при низких статических и динамических потерях. Такой буферный слой в четырёхслойном приборе требует устранения анодных закороток, но при этом сохраняется эффективное освобождение электронов во время выключения. В новом приборе IGCT буферный слой комбинируется с прозрачным анодным эмиттером. Прозрачный анод - это p-n переход с управляемой током эффективностью эмиттера.

Для максимальной помехоустойчивости и компактности блок управления окружает IGCT, формируя единую конструкцию с охладителем, и содержит только ту часть схемы, которая необходима для управления непосредственно IGCT. Как следствие, уменьшено число элементов управляющего блока, снижены параметры рассеяния тепла, электрических и тепловых перегрузок. Поэтому, также существенно снижена стоимость блока управления и интенсивность отказов. IGCT, с его интегрированным управляющим блоком, легко фиксируется в модуле и точно соединяется с источником питания и источником управляющего сигнала через оптоволокно. Путём простого размыкания пружины, благодаря детально разработанной прижимной контактной системе, к IGCT прилагается правильно рассчитанное прижимное усилие, создающее электрический и тепловой контакт. Таким образом, достигается максимальное облегчение сборки и наибольшая надёжность. При работе IGCT без снаббера, обратный диод тоже должен работать без снаббера. Эти требования выполняет высокомощный диод в прижимном корпусе с улучшенными характеристиками, произведённый с использованием процесса облучения в сочетании с классическими процессами. Возможности по обеспечению di/dt определяются работой диода (см. рис. 6).

Рис. 6. Упрощенная схема трёхфазного инвертора на IGCT

Основной производитель IGCT фирма "ABB".Параметры тиристоров по напряжению U DRM: 4500 В, 6000 В; по току ITGQM: 3000 А, 4000 А.

Заключение

Быстрое развитие в начале 90-х годов технологии силовых транзисторов привело к появлению нового класса приборов - биполярные транзисторы с изолированным затвором (IGBT - Insulated Gate Bipolar Transistors). Основными преимуществами IGBT являются высокие значения рабочей частоты, КПД, простота и компактность схем управления (вследствие малости тока управления).

Появление в последние годы IGBT с рабочим напряжением до 4500 В и способностью коммутировать токи до 1800 А привело к вытеснению запираемых тиристоров (GTO) в устройствах мощностью до 1 МВт и напряжением до 3,5 кВ.

Однако новые приборы IGCT, способные работать с частотами переключения от 500 Гц до 2 кГц и имеющие более высокие параметры по сравнению с IGBT транзисторами, сочетают в себе оптимальную комбинацию доказанных технологий тиристоров с присущими им низкими потерями, и бесснабберной, высокоэффективной технологией выключения путём воздействия на управляющий электрод. Прибор IGCT сегодня - идеальное решение для применения в области силовой электроники среднего и высокого напряжений.

Характеристики современных мощных силовых ключей с двусторонним теплоотводом приведены в табл. 1.

Таблица 1. Характеристики современных мощных силовых ключей с двусторонним теплоотводом

Тип прибора Преимущества Недостатки Области применения
Традиционный тиристор (SCR) Самые низкие потери во включённом состоянии. Самая высокая перегрузочная способность. Высокая надёжность. Легко соединяются параллельно и последовательно. Не способен к принудительному запиранию по управляющему электроду. Низкая рабочая частота. Привод постоянного тока; мощные источники питания; сварка; плавление и нагрев; статические компенсаторы; ключи переменного тока
GTO Способность к управляемому запиранию. Сравнительно высокая перегрузочная способность. Возможность последовательного соединения. Рабочие частоты до 250 Гц при напряжении до 4 кВ. Высокие потери во включённом состоянии. Очень большие потери в системе управления. Сложные системы управления и подачи энергии на потенциал. Большие потери на переключение. Электропривод; статические компенсаторы;реактивной мощности; системы бесперебойного питания;индукционный нагрев
IGCT Способность к управляемому запиранию. Перегрузочная способность та же, что и у GTO. Низкие потери во включённом состоянии на переключение. Рабочая частота - до единиц, кГц. Встроенный блок управления (драйвер). Возможность последовательного соединения. Не выявлены из-за отсутствия опыта эксплуатации Мощные источники питания (инверторная и выпрямительная подстанции линий передач постоянного тока); электропривод (инверторы напряжения для преобразователей частоты и электроприводов различного назначения)
IGBT Способность к управляемому запиранию. Самая высокая рабочая частота (до 10 кГц). Простая неэнергоёмкая система управления. Встроенный драйвер. Очень высокие потери во включённом состоянии. Электропривод (чопперы); системы бесперебойного питания; статические компенсаторы и активные фильтры; ключевые источники питания

Содержание:

Открытие свойств переходов полупроводников по праву можно назвать одним из важнейших в ХХ веке. В результате появились первые полупроводниковые приборы - диоды и транзисторы. А также схемы, в которых они нашли применение. Одной из таких схем является соединение двух биполярных транзисторов противоположных типов - p-n-p c n-p-n . Эта схема показана далее на изображении (б). Она иллюстрирует, что такое тиристор и принцип его действия. В ней присутствует положительная обратная связь. В результате каждый транзистор увеличивает усилительные свойства другого транзистора.

Транзисторный эквивалент

При этом любое изменение проводимости транзисторов в любом направлении лавинообразно нарастает и завершается одним из граничных состояний. Они либо заперты, либо отперты. Этот эффект называется триггерным. А по мере развития микроэлектроники оба транзистора объединили в 1958 году на одной подложке, обобщив одноименные переходы. В результате появился новый полупроводниковый прибор, названный тиристором. На взаимодействии двух транзисторов и зиждется принцип работы тиристора. В результате объединения переходов у него такое же количество выводов, как и у транзистора (а).

На схеме управляющий электрод - это база транзистора структуры n-p-n . Именно ток базы транзистора изменяет проводимость между его коллектором и эмиттером. Но управление может быть выполнено также и по базе p-n-p транзистора. Таково устройство тиристора. Выбор управляющего электрода определяют его особенности, в том числе выполняемые задачи. Например, в некоторых из них вообще не используются какие-либо управляющие сигналы. Поэтому, зачем же использовать управляющие электроды...

Динистор

Это задачи, где применяются двухэлектродные разновидности тиристоров - динисторы. В них присутствуют резисторы, соединенные с эмиттером и базой каждого транзистора. Далее на схеме это R1 и R3. Для каждого электронного прибора есть ограничения по величине приложенного напряжения. Поэтому до некоторой его величины упомянутые резисторы удерживают каждый из транзисторов в запертом состоянии. Но при дальнейшем увеличении напряжения через переходы коллектор–эмиттер появляются токи утечки.

Они подхватываются положительной обратной связью, и оба транзистора, то есть динистор, отпираются. Для желающих поэкспериментировать далее показано изображение со схемой и номиналами компонентов. Можно ее собрать и проверить рабочие свойства. Обратим внимание на резистор R2, отличающийся подбором нужного номинала. Он дополняет эффект утечки и, соответственно, напряжение срабатывания. Следовательно, динистор - это тиристор, принцип работы которого определен величиной питающего напряжения. Если оно относительно велико, он включится. Естественно интересно также узнать, как же его выключить.

Трудности выключения

С выключением тиристоров дело обстояло, как говорится, туго. По этой причине довольно длительное время виды тиристоров ограничивались только двумя выше упомянутыми структурами. До середины девяностых годов ХХ века применяются тиристоры только этих двух типов. Дело в том, что выключение тиристора может произойти лишь при запирании одного из транзисторов. Причем на определенное время. Оно определено скоростью исчезновения зарядов соответствующих отпертому переходу. Наиболее надежный способ «прибить» эти заряды - полностью отключить ток, протекающий через тиристор.

Большинство из них так и работают. Не на постоянном токе, а на выпрямленном, соответствующем напряжению без фильтрации. Оно изменяется от нуля до амплитудного значения, а затем вновь уменьшается до нуля. И так далее, соответственно частоте переменного напряжения, которое выпрямляется. В заданный момент между нулевыми значениями напряжения на управляющий электрод поступает сигнал, и тиристор отпирается. А при переходе напряжения через ноль вновь запирается.

Чтобы выключить его на постоянном напряжении и токе, при котором значение нуля отсутствует, необходим шунт, действующий определенное время. В простейшем варианте это либо кнопка, присоединенная к аноду и катоду, либо соединенная последовательно. Если прибор отперт, на нем присутствует остаточное напряжение. Нажатием кнопки оно обнуляется, и ток через него прекращается. Но если кнопка не содержит специального приспособления, и ее контакты разомкнутся, тиристор непременно снова включится.

Этим приспособлением должен быть конденсатор, подключаемый параллельно тиристору. Он ограничивает скорость нарастания напряжения на приборе. Этот параметр вызывает набольшее сожаление при использовании этих полупроводниковых приборов, поскольку понижается рабочая частота, с которой тиристор способен коммутировать нагрузку, и, соответственно, коммутируемая мощность. Происходит это явление из-за внутренних емкостей, характерных для каждой из моделей этих полупроводниковых приборов.

Конструкция любого полупроводникового прибора неизбежно образует группу конденсаторов. Чем быстрее нарастает напряжение, тем больше токи, их заряжающие. Причем они возникают во всех электродах. Если такой ток в управляющем электроде превысит некоторое пороговое значение, тиристор включится. Поэтому для всех моделей приводится параметр dU/dt.

  • Выключение тиристора, как результат перехода питающего напряжения через ноль, называется естественным. Остальные варианты выключения называются принудительными или искусственными.

Многообразие модельного ряда

Эти варианты выключения усложняют тиристорные коммутаторы и уменьшают их надежность. Но развитие тиристорного разнообразия получилось очень плодотворным.

В наше время освоено промышленное производство большого числа разновидностей тиристоров. Область их применения - не только мощные силовые цепи (в которых работают запираемый и диод-тиристор , симистор), но и цепи управления (динистор, оптотиристор). Тиристор на схеме изображается, как показано далее.

Среди них есть модели, у которых рабочие напряжения и токи самые большие среди всех полупроводниковых приборов. Поскольку промышленное электроснабжение немыслимо без трансформаторов, роль тиристоров в его дальнейшем развитии является основополагающей. Запираемые высокочастотные модели в инверторах обеспечивают формирование переменного напряжения. При этом его величина может достигать 10 кВ с частотой 10 килогерц при силе тока 10 кА. Габариты трансформаторов при этом уменьшаются в несколько раз.

Включение и выключение запираемого тиристора происходит исключительно от воздействия на управляющий электрод специальными сигналами. Полярность соответствует определенной структуре этого электронного прибора. Это одна из простейших разновидностей, именуемая как GTO. Кроме нее применяются более сложные запираемые тиристоры со встроенными управляющими структурами. Эти модели называются GCT, а также IGCT. Использование в этих структурах полевых транзисторов относит запираемые тиристоры к приборам семейства MCT.

Мы постарались сделать наш обзор информативным не только для начитанных посетителей нашего сайта, но также и для чайников. Теперь, когда мы ознакомились с тем, как работает тиристор, можно найти применение этим знаниям для практического использования. Например, в несложном ремонте бытовых электроприборов. Главное - увлекаясь работой, не забывайте о технике безопасности!

Чтобы понять как работает схема, необходимо знать действие и назначение каждого из элементов. В этой статье рассмотрим принцип работы тиристора, разные виды и режимы работы, характеристики и виды. Постараемся объяснить все максимально доступно, чтобы было понятно даже для начинающих.

Тиристор — полупроводниковый элемент, имеющий только два состояния: «открыто» (ток проходит) и «закрыто» (тока нет). Причем оба состояния устойчивые, то есть переход происходит только при определенных условиях. Само переключение происходит очень быстро, хоть и не мгновенно.

По способу действия его можно сравнить с переключателем или ключом. Вот только переключается тиристор при помощи напряжения, а отключается пропаданием тока или снятием нагрузки. Так что принцип работы тиристора понять несложно. Можно представлять его как ключ с электрическим управлением. Так, да не совсем.

Тиристор, как правило, имеет три выхода. Один управляющий и два, через которые протекает ток. Можно попробовать коротко описать принцип работы. При подаче напряжения на управляющий выход, коммутируется цепь через анод-коллектор. То есть, он сравним с транзистором. Только с той разницей, что у транзистора величина пропускаемого тока зависит от поданного на управляющий вывод напряжения. А тиристор либо полностью открыт, либо полностью закрыт.

Внешний вид

Внешний вид тиристора зависит от даты его производства. Элементы времен Советского Союза — металлические, в виде «летающей тарелки» с тремя выводами. Два вывода — катод и управляющий электрод — находятся на «дне» или «крышке» (это с какой стороны смотреть). Причем электрод управления меньше по размерам. Анод может находиться с противоположной стороны от катода, или торчать вбок из-под шайбы, которая есть на корпусе.

Два вида тиристоров — современные и советские, обозначение на схемах

Современные тиристоры выглядят по-другому. Это небольшой пластиковый прямоугольник с металлической пластиной сверху и тремя выводами-ножками снизу. В современном варианте есть одно неудобство: надо смотреть в описании какой из выводов анод, где катод и управляющий электрод. Как правило, первый — анод, затем катод и крайний правый — это электрод. Но это как правило, то есть, не всегда.

Принцип работы

По принципу действия, тиристор можно еще сравнить с диодом. Пропускать ток он будет в одном направлении — от анода к катоду, но происходить это будет только в состоянии «открыто». На схемах тиристор похож на диод. Также имеется анод и катод, но есть еще дополнительный элемент — управляющий электрод. Понятное дело, есть отличия и в выходном напряжении (если сравнивать с диодом).

В схемах переменного напряжения тиристор будет пропускать только одну полуволну — верхнюю. Когда приходит нижняя полуволна, он сбрасывается в состояние «закрыто».

Принцип работы тиристора простыми словами

Рассмотрим принцип работы тиристора. Стартовое состояние элемента — закрыто. «Сигналом» к переходу в состояние «открыто» является появление напряжения между анодом и управляющим выводом. Вернуть тиристор в состояние «закрыто» можно двумя способами:

  • снять нагрузку;
  • уменьшить ток ниже тока удержания (одна из технических характеристик).

В схемах с переменным напряжением, как правило, сбрасывается тиристор по второму варианту. Переменный ток в бытовой сети имеет синусоидальную форму, когда его значение приближается к нулю и происходит сброс. В схемах, питающихся от источников постоянного тока, надо либо принудительно убирать питание, либо снимать нагрузку.

То есть, работает тиристор в схемах с постоянным и переменным напряжением по-разному. В схеме постоянного напряжения, после кратковременного появления напряжения между анодом и управляющим выводом, элемент переходит в состояние «открыто». Далее может быть два варианта развития событий:

  • Состояние «открыто» держится даже после того, как напряжение анод-выход управления пропало. Такое возможно если напряжение, поданное на анод-управляющий вывод, выше чем неотпирающее напряжение (эти данные есть в технических характеристиках). Прекращается прохождение тока через тиристор, фактически только разрывом цепи или выключением источника питания. Причем выключение/обрыв цепи могут быть очень кратковременными. После восстановления цепи, ток не течет до тех пор, пока на анод-управляющий вывод снова не подадут напряжение.
  • После снятия напряжения (оно меньше чем отпирающее) тиристор сразу переходит в состояние «закрыто».

Так что в схемах постоянного тока есть два варианта использования тиристора — с удержанием открытого состояния и без. Но чаще применяют по первому типу — когда он остается открытым.

Принцип работы тиристора в схемах переменного напряжения отличается. Там возвращение в запертое состояние происходит «автоматически» — при падении силы тока ниже порога удержания. Если напряжение на анод-катод подавать постоянно, на выходе тиристора получаем импульсы тока, которые идут с определенной частотой. Именно так построены импульсные блоки питания. При помощи тиристора они преобразуют синусоиду в импульсы.

Проверка работоспособности

Проверить тиристор можно либо при помощи мультиметра, либо создав простенькую проверочную схему. Если при прозвонке иметь перед глазами технические характеристики, можно заодно проверить сопротивление переходов.

Прозвонка мультиметром

Для начала разберем прозвонку мультиметром. Переводим прибор в режим прозвонки.

Обратите внимание, что величина сопротивления у разных серий разная — на это не стоит обращать особого внимания. Если хотите проверить и сопротивление переходов, посмотрите в технических характеристиках.

На рисунке представлены схемы испытаний. Крайний справа рисунок — усовершенствованный вариант с кнопкой, которую устанавливают между катодом и управляющим выводом. Для того чтобы мультиметр зафиксировал протекающий по цепи ток, кратковременно нажимаем на кнопку.

При помощи лампочки и источника постоянного тока (батарейка тоже пойдет)

Если мультиметра нет, можно проверить тиристор при помощи лампочки и источника питания. Подойдет даже обычная батарейка или любой другой источник постоянного напряжения. Вот только напряжение должно быть достаточным для того, чтобы засветить лампочку. Потребуется еще сопротивление или обычный кусок проволоки. Из этих элементов собирается простая схема:

  • Плюс от источника питания подаем на анод.
  • К катоду подключаем лампочку, второй ее вывод подключаем к минусу источника питания. Лампочка не горит, так как термистор заперт.
  • Кратковременно (при помощи куска проволоки или сопротивления) соединяем анод и управляющий вывод.
  • Лампочка загорается и продолжает гореть, хотя перемычка убрана. Термистор остается в открытом состоянии.
  • Если выкрутить лампочку или выключить источник питания, то лампочка, естественно, погаснет.
  • Если восстановить цепь/питание, она не загорится.

Заодно с проверкой, эта схема позволяет понять принцип работы тиристора. Ведь картинка получается очень наглядной и понятной.

Виды тиристоров и их особые свойства

Полупроводниковые технологии все еще разрабатываются и совершенствуются. За несколько десятилетий появились новые разновидности тиристоров, которые имеют некоторые отличия.

  • Динисторы или диодные тиристоры. Отличаются тем, что имеют только два вывода. Открываются подачей на анод и катод высокого напряжения в виде импульса. Называют еще «неуправляемые тиристоры».
  • Тринисторы или триодные тиристоры. В них есть управляющий электрод, но управляющий импульс может подаваться:
    • На управляющий выход и катод. Название — с управлением катодом.
    • На управляющий электрод и анод. Соответственно — управление анодом.

Есть также разные виды тиристоров по способу запирания. В одном случае достаточно уменьшения анодного тока ниже уровня тока удержания. В другом случае — подается запирающее напряжение на управляющий электрод.

По проводимости

Мы говорили, что проводят тиристоры ток только в одном направлении. Обратной проводимости нет. Такие элементы называют обратно-непроводящие, но существуют не только такие. Есть и другие варианты:

  • Имеют невысокое обратное напряжение, называются обратно-проводящие.
  • С ненормируемой обратной проводимостью. Ставят в схемах, где обратное напряжение возникнуть не может.
  • Симисторы. Симметричные тиристоры. Проводят ток в обоих направлениях.

Тиристоры могут работать в режиме ключа. То есть при поступлении импульса управления подавать ток на нагрузку. Нагрузка, в этом случае, рассчитывается исходя из напряжения в открытом виде. Надо также учитывать наибольшую рассеиваемую мощность. Вот в этом случае лучше выбирать металлические модели в виде «летающей тарелки». К ним удобно приделывать радиатор — для более быстрого охлаждения.

Классификация по особым режимам работы

Еще можно выделить следующие подвиды тиристоров:

  • Запираемые и незапираемые. Принцип работы тиристора незапираемого немного другой. Он находится в открытом состоянии когда плюс приложен к аноду, минус — на катоде. Переходит в закрытое состоянии при смене полярности.
  • Быстродействующие. Имеют малое время перехода из одного состояния в другое.
  • Импульсные. Очень быстро переходит из одного состояние в другое, используется в схемах с импульсными режимами работы.

Основное назначение — включение и выключение мощной нагрузки при помощи маломощных управляющих сигналов

Основная область использования тиристоров — в качестве электронного ключа, служащего для замыкания и размыкания электрической цепи. В общем много привычных устройств построены на тиристорах. Например, гирлянда с бегущими огнями, выпрямители, импульсные источники тока, выпрямители и многие другие.

Характеристики и их значение

Некоторые тиристоры могут коммутировать очень большие токи, в этом случае их называют силовыми тиристорами. Они изготавливаются в металлическом корпусе — для лучшего отвода тепла. Небольшие модели с пластиковым корпусом — это обычно маломощные варианты, которые используют в малоточных схемах. Но, всегда есть исключения. Так что для каждой конкретной цели подбирают требуемый вариант. Подбирают, понятное дело, по параметрам. Вот основные:


Есть еще динамический параметр — время перехода из закрытого в открытое состояние. В некоторых схемах это важно. Может еще указываться тип быстродействия: по времени отпирания или по времени запирания.