Домой / Баня / Дедуктивные умозаключения. выводы из простых суждений (выводы логики предикатов). Выводы логики высказываний Задания для самостоятельной работы

Дедуктивные умозаключения. выводы из простых суждений (выводы логики предикатов). Выводы логики высказываний Задания для самостоятельной работы

рассуждение, в котором осуществляется переход по правилам от высказывания или системы высказываний к высказыванию или системе высказываний. К логическому выводу обычно предъявляются (совместно или по отдельности) следующие требования: 1) правила перехода должны воспроизводить отношение следования логического (ту или иную его разновидность); 2) переходы в логическом выводе должны осуществляться на основе учета только синтаксических характеристик высказываний или систем высказываний.

В ряде случаев логический вывод определяется так, что на использование некоторых правил накладываются ограничения. Напр., в аксиоматических исчислениях, являющихся вариантами классической логики предикатов первого порядка и содержащих среди правил вывода только модус поненс и правило обобщения, логический вывод часто определяется так, что на использование правила обобщения накладывается ограничение: любое применение правилам обобщения в таково, что переменная, по которой ироввдитея обобюение в этом применении правила обобщения, не входит ни в одну посылку, предшествующую в нижней формуле этого применения правила обобщения. Цель этого ограничения обеспечить ряд полезных с точки зрения логики свойств вывода (напр., выполнение для простых форм дедукции теоремы). Существуют определения логического вывода (как для аксиоматических, так и для исчислений других типов), которые (1) задают логический вывод не только из множества посылок, но допускают другие формы организации посылок (напр., списки или последовательности), (2) структурируют вывод не только линейно, но, напр., в форме дерева, (3) имеют явно выраженный индуктивный характер; при этом индуктивное определение вывода может вестись как по одной переменной (напр., по длине вывода), так и по нескольким переменньм (напр., по длине логического вывода и по числу его посылок), (4) содержат формализацию зависимости между формулами в логическом выводе, и многие другие определения логического вывода, обусловленные иными способами формализации и аксиоматизации классических и неклассических систем логики. О некоторых из них см. в ст. Аналитических таблиц метод. Семиотика, Исчисление секвенций.

Отличное определение

Неполное определение ↓

вывод логический

ВЫВОД ЛОГИЧЕСКИЙ -рассуждение, в котором по определенным правилам осуществляется переход от высказываний или системы высказываний к высказыванию или системе высказываний. К В. л. обычно предъявляются (разом или по отдельности) следующие требования: 1) правила перехода должны воспроизводить отношение логического следования (ту или иную его разновидность), 2) переходы в В. л. должны осуществляться на основе учета только синтаксических характеристик высказываний или систем высказываний. В современной логике В. л. определяется для формальных систем, в которых высказывания представлены формулами. Обычно выделяют три основных типа формальных систем: аксиоматические исчисления, исчисления натурального вывода, исчисления секвенций. Стандартное определение В. л. (из множества формул Г) для аксиоматического исчисления S таково: В. л. в S из множества формул Г есть такая последовательность Аг..Ап формул языка исчисления S, что для каждой А. (1 < i < п) выполняется, по крайней мере, одно из следующих трех условий: 1) А. есть формула из Г; 2) А. есть аксиома исчисления S; 3) А. есть формула, получающаяся из предшествующей ей в последовательности А,... А формулы или из предшествующих ей в этой последовательности формул по правилу вывода исчисления S. Если а есть В. л. в S из множества формул Г, то формулы из Г называются посылками а, а сам вывод называется В. л. в S из посылок Г; если при этом А есть последняя формула а, то а называется В. л. в S формулы А из посылок Г. Запись «Г |- А» означает, что существует В. л. в S формулы А из посылок Г. В. л. в S из пустого множества формул называется доказательством в S. Запись «|- А» означает, что существует доказательство в S формулы А. Формула А называется доказуемой в S, если ч А. В качестве примера рассмотрим аксиоматическое исчисление S со стандартным определением вывода, являющееся вариантом аксиоматизации классической логики высказываний. Алфавит языка L этого исчисления содержит только пропозициональные переменные р, р2,..., Р п> - - - > логические связки з, -> и круглые скобки. Определение L-формулы (формулы в языке L) обычное: 1) пропозициональная переменная есть L-формула, 2) если А и В есть L-формулы, то (А з В), (- > А) есть L-формулы, 3) ничто другое не есть L-формула. Аксиомы Sj - это все L-формулы следующих шести видов (и только этих видов): I (Аз А), II ((ADB)D((BDC)3(ADC))), III ((AD(BDQ)D(BD(ADC))), IV ((ADhB))D(BDhA))), V (hhA))DA), VI (((A s > В) з A) з A). Единственное правило исчисления Sj есть правило модус поненс в L: А, (А о В) / В (где А и В есть L-формулы). Определение В. л. для S является очевидной конкретизацией стандартного определения В. л., которое дано выше. Последовательность ((р1 з р2) з (р, з р2)), (((р, з р2) з (Р, => Р2» 3 (Р, => ((Р, э Р 2) э Р2)))> (P i 3 ((Р, 3 Р 2) 3 Р2)) > Pi´ ((р, з р2) з р2) L-формул является В. л. в S, L-формулы ((р; з р2) з р2) из pj. Действительно, первый член этой последовательности есть аксиома вида I, второй член этой последовательности есть аксиома вида III, третий член этой последовательности получается из первого и второго членов этой последовательности по правилу модус поненс в L, четвертый член этой последовательности есть L-формула из, пятый член этой последовательности получается из четвертого и третьего членов этой последовательности по правилу модус поненс в L. Итак, р, (-51((р,зр2)зр2). В ряде случаев В. л. определяется так, что использование в нем некоторых правил ограничивается. Напр., для некоторых аксиоматических исчислений, являющихся вариантами аксиоматизации классической логики предикатов первого порядка и содержащих среди правил вывода правило обобщения, В. л. иногда определяется так, что на использование правила обобщения накладывается ограничение, запрещающее применение в В. л. правила обобщения по переменной, входящей хотя бы в одну посылку данного В. л. Известны В. л. (как для аксиоматических исчислений, так и для исчислений других типов) не только из множеств формул, но и из других систем формул (напр., из последовательностей формул, из списков формул). Исследуются В. л., не имеющие линейной структуры (любой В. л., удовлетворяющий стандартному определению В. л., имеет линейную структуру, ибо является последовательностью формул), а имеющие, напр., древовидную структуру. Рассматриваются В. л., содержащие формализацию зависимостей между входящими в них формулами, и многие другие В. л. Наличие большого числа разновидностей В. л. обусловлено как множественностью логик, так и многообразием задач, решаемых при их формализации. В.М. Попов

ВЫВОД ЛОГИЧЕСКИЙ

ВЫВОД ЛОГИЧЕСКИЙ - рассуждение, в котором

осуществляется переход по правилам от высказывания или системы высказываний к высказыванию или системе высказываний. К логическому выводу обычно предъявляются (совместно или по отдельности) следующие требования: 1) правила перехода должны воспроизводить отношение следования логического (ту или иную его разновидность); 2) переходы в логическом выводе должны осуществляться на основе учета только синтаксических характеристик высказываний или систем высказываний.

В современной логике понятие логического вывода определяется для формальных систем, в которых высказывания представлены формулами. Обычно выделяют три основных типа формальных систем: аксиоматические исчисления, исчисления натурального вывода, исчисления секвенций. Стандартное определение логического вывода (из множества формул Г) для аксиоматического исчисления S таково: логический вывод в S из множества формул Г есть такая последовательность Ai... A, формул языка исчисления S, что для каждой Ai (ÏSiSn) выполняется, по крайней мере, одно из следующих трех условий: 1) А, есть формула из Г; 2) Αι есть аксиома исчисления S; 3) А, есть формула, получающаяся из предшествующей ей в последовательности Л ι...Лд формулы или из предшествующих ей в этой последовательности формул по одному из правил вывода исчисления S. Если α есть логический вывод в S из множества формул Г, то формулы из Г называются посылками a, a сам вывод α называется выводом в S из посылок Г; если при этом А есть последняя формула а, то а называется логическим выводом в S формулы А из посылок Г. Запись “Г ,А* означает, что существует логический вывод в S формулы А из посылок Г. Логический вывод в S из пустого множества формул называется доказательством в S. Запись “ г,-4” означает, что существует доказательство в S формулы А. Формула А называется доказуемой в S, если -А. В качестве примера рассмотрим аксиоматическое исчисление Si со стандартным определением вывода, являющееся вариантом классической логики высказывании. Алфавит этого исчисления содержит только пропозициональные переменные pi, pi, ..., р„ ..., логические связки =>, 1 и круглые скобки. Определение формулы в этом языке обычное. Аксиомы?ι-ύто формулы следующих шести видов (и только эти формулы): I. (А^>А), II. ((Д55)э((Д=)С)э(^эС))), Ш. ((Л=?/”эО)эГДэ(ЛэС))), IV. ((Лэ(1Д))э(Дэ(1Д))), V. ((1(1Л)эЛ), М. (((А зВ)=,А)зА).

Единственное правило исчисления St модус поненс: Л, А^В^В.

Определение логического вывода для Si является очевидной конкретизацией определения, данного выше. Следующая последовательность формул Ф1 - Ф6 является логическим выводом в Si формулы ((pi^pi)^) из посылок .

ΦΙ. ((Ρι^Ρι)^(Ρι^Ρι)), Ф2. Wpi-spî) э(р1 эра)) =>ό?ι =>((?, э^) з^))), ФЗ. (р1Э((р1=>й)э^)), Ф4.^, Ф5. ((pi Dpi)^pî).

Анализ: Ф1 есть аксиома вида 1, Ф2 есть аксиома вида III, ФЗ получена по правилу модус поненс из Ф1 и Ф2, Ф4 есть посылка, Ф5 получена по правилу модус поненс из Ф4 и ФЗ. Итак, fßilhi ((р^рг)=)рг). Рассмотрев последовательность формул Ф1, Ф2 ФЗ, убеждаемся, что гл(р13р1)зрг)).

В ряде случаев логический вывод определяется так, что на использование некоторых правил накладываются ограничения. Напр., в аксиоматических исчислениях, являющихся вариантами классической логики предикатов первого порядка и содержащих среди правил вывода только модус поненс и правило обобщения, логический вывод часто определяется так, что на использование правила обобщения накладывается ограничение: любое применение правилам обобщения в α таково, что переменная, по которой ироввдитея обобюение в этом применении правила обобщения, не входит ни в одну посылку, предшествующую в α нижней формуле этого применения правила обобщения. Цель этого ограничения обеспечить ряд полезных с точки зрения логики свойств вывода (напр., выполнение для простых форм дедукции теоремы). Существуют определения логического вывода (как для аксиоматических, так и для исчислений других типов), которые (1) задают логический вывод не только из множества посылок, но допускают другие формы организации посылок (напр., списки или последовательности), (2) структурируют вывод не только линейно, но, напр., в форме дерева, (3) имеют явно выраженный индуктивный характер; при этом индуктивное определение вывода может вестись как по одной переменной (напр., по длине вывода), так и по нескольким переменньм (напр., по длине логического вывода и по числу его посылок), (4) содержат формализацию зависимости между формулами в логическом выводе, и многие другие определения логического вывода, обусловленные иными способами формализации и аксиоматизации классических и неклассических систем логики. О некоторых из них см. в ст. Аналитических таблиц метод. Семиотика, Исчисление секвенций.

  • - логический - формальный вывод в исчислении, содержащем логические правила и имеющем в качестве основных выводимых объектов формулы...

    Математическая энциклопедия

  • - формальный вывод, по возмвжности приближенный к содержательному рассуждению, привычному для математика и логика...

    Математическая энциклопедия

  • - в древнерусском зодчестве крепостное сооружение, выступающее перед основным. * * * 1. Форт. 2. Печная труба...

    Архитектурный словарь

  • - в логике - рассуждение, в ходе которого из некоторых исходных высказываний, называемых посылками, с помощью логических правил получают новое высказывание, называемое заключением...

    Философская энциклопедия

  • - ВЫВОД ЛОГИЧЕСКИЙ -рассуждение, в котором по определенным правилам осуществляется переход от высказываний или системы высказываний к высказыванию или системе высказываний...

    Энциклопедия эпистемологии и философии науки

  • - рассуждение, в ходе которого из к.-л. исходных суждений - посылок - с помощью логических правил получают заключение - новое суждение...

    Словарь логики

  • - англ. conclusion/deduction; нем. Schlussfolgerung. Умозаключение, в ходе к-рого из к.-л. исходных суждений получается логически вытекающее суждение. см. АБДУКЦИЯ, ДЕДУКЦИЯ, ИНДУКЦИЯ...

    Энциклопедия социологии

  • - English: Terminal Часть электротехнического изделия, предназначенная для электрического соединения его с другими изделиями Источник: Термины и определения в электроэнергетике...

    Строительный словарь

  • - 1. Термин, связанный с переводом информации, содержащейся в основном запоминающем устройстве компьютера, в поддерживающее запоминающее устройство...

    Словарь бизнес терминов

  • - или умозаключение - процесс мысли, которым мы убеждаемся в истинности известного суждения при посредстве других суждений...

    Энциклопедический словарь Брокгауза и Евфрона

  • - в логике, рассуждение, в ходе которого из каких-либо исходных суждений), посылок или предпосылок В., получается суждение, логически вытекающее из посылок. См. Дедукция, Индукция...

    Большая Советская энциклопедия

  • - переход от посылок к следствиям по правилам логики...

    Большой энциклопедический словарь

  • - ВЫ́ВОД, -а, муж. 1. см. вывести 1. 2. Умозаключение, то, что выведено. Важный в. Сделать необходимые выводы. 3. Провод, устройство, выходящее или выводящее что-н. наружу. | прил. выводной, -ая, -ое...

    Толковый словарь Ожегова

  • - вы́вод сущ., м., употр. часто Морфология: чего? вы́вода, чему? вы́воду, что? вы́вод, чем? вы́водом, о чём? о вы́воде; мн. что? вы́воды, чего? вы́водов, чему? вы́водам, что? вы́воды, чем? вы́водами, о чём? о вы́водах 1...

    Толковый словарь Дмитриева

  • - см....

    Сводная энциклопедия афоризмов

  • - Дать вывод. Сиб. Ответить кому-л. ФСС, 53; СРНГ 7, 257. Сделать вывод. Кар. . Обменяться подарками. СРГК 1, 254...

    Большой словарь русских поговорок

"ВЫВОД ЛОГИЧЕСКИЙ" в книгах

5.4. Логический анализ

Из книги Восстановление бухгалтерского учета, или Как «реанимировать» фирму автора Уткина Светлана Анатольевна

5.4. Логический анализ Во избежание ошибок и неточностей при составлении формы № 1 «Бухгалтерский баланс» целесообразно проанализировать по Главной книге обороты и остатки по счетам. Сделать это довольно просто. Рассмотрим на примере. К примеру, вы составляете

Логический позитивизм

Из книги Тень и реальность автора Свами Сухотра

Логический позитивизм Течение, возникшее в XX в. как развитие эмпиризма и позитивизма. Его сутью является теория верификации, утверждающая, что единственно валидной истиной является то, что подтверждено современными научными методами. Чтобы выразить эту истину, язык

2.9. Логический квадрат

Из книги Логика. Учебное пособие автора Гусев Дмитрий Алексеевич

2.9. Логический квадрат Отношения между простыми сравнимыми суждениями изображаются схематически с помощью логического квадрата, который был разработан еще средневековыми логиками. Как видим, вершины квадрата обозначают четыре вида простых суждений, а его стороны и

2. Логический позитивизм

Из книги Введение в философию автора Фролов Иван

2. Логический позитивизм В 1922 году на кафедре натуральной философии Венского университета, которую после смерти Э. Маха возглавил профессор М. Шлик, собралась группа молодых ученых, поставивших перед собой смелую цель - реформировать науку и философию. Эта группа вошла

2. Логический обвал

Из книги Философия. Книга третья. Метафизика автора Ясперс Карл Теодор

2. Логический обвал - То, что может быть продемонстрировано или что требуется доказать, есть конечное познание чего-то особенного. Экзистенция и трансценденция, в смысле этого бытия, не существуют. Если мы мыслим о них, то мысль принимает логические формы, которые

Логический позитивизм

Из книги История философии автора Скирбекк Гуннар

Логический позитивизм В период между первой и второй мировыми войнами были выдвинуты новые философские идеи. Многие из них были стимулированы развитием неклассической физики и стали предметом серьезного эпистемологического анализа со стороны логического позитивизма.

Логический крючок

Из книги Виктор Суворов врет! [Потопить «Ледокол»] автора Верхотуров Дмитрий Николаевич

Логический крючок В использовании этой «концепции» у Виктора Суворова есть занятный момент. Подробно и многословно «доказывается» только второй тезис, тогда как остальные тезисы только упоминаются, очень кратко и без обоснования. Все внимание сосредоточивается на его

1.1. Наш логический вывод и свидетельство Ливия

Из книги автора

1.1. Наш логический вывод и свидетельство Ливия Прежде чем обратиться к первоисточникам, вспомним эмпирико-статистические и астрономические результаты, отождествляющие Царский Рим со Второй и Третьей Римскими империями, а также с Великой = «Монгольской» Империей XIII–XVI

Логический закон

Из книги Большая Советская Энциклопедия (ЛО) автора БСЭ Из книги Описание языка PascalABC.NET автора Коллектив РуБоард

Логический тип Значения логического типа boolean занимают 1 байт и принимают одно из двух значений, задаваемых предопределенными константами True (истина) и False (ложь).Для логического типа определены статические методы: boolean.Parse(s) - функция, конвертирующая строковое

26. Логический анализ

Из книги Упражнения в стиле автора Кено Раймон

26. Логический анализ Автобус.Площадка.Площадка автобуса. Это место.Полдень.Приблизительно.Приблизительно полдень. Это время.Пассажиры.Ссора.Ссора пассажиров. Это действие.Молодой человек.Шляпа. Длинная тощая шея.Молодой человек в шляпе с плетенной тесьмой вокруг. Это

Логический способ

Из книги Активные продажи 3.1: Начало автора Рысев Николай Юрьевич

Логический способ Каждое возражение можно логически отразить – представить аргументы, достойные интеллекта клиента, и перевернуть его воззрения.К: У вас слишком молодая аудитория.П: Молодость – это стремительность, желание, деньги, решительность. Как вы смотрите на

Умозаключения осуществляются не только из простых, но и из сложных суждений. Довольно широко используются выводы, основаниями которых являются условные и разделительные (дизъюнктивные) высказывания. Такие высказывания сочетаются в различных комбинациях друг с другом или с категорическими суждениями. В зависимости от этого существуют различные виды выводов логики высказываний.

Понятие о выводах логики высказываний

* Выводы логики высказываний г дедуктивными опосредованными виводами. их основная особенность заключается в том, то здесь учитывается только структура сложных высказываний (молекул) и не учитывается структура высказываний, которые являются элементарными (атомы). Иначе говоря, в выводах логики высказываний рассуждение строится исключительно на логических связях между высказываниями.

Логическая схема (структура) вывода будет такой:

Аі, Аг, Ап или А, А2, Ап Ь В.

В этой структуре высказывания "А, А,..., Ап" являются основаниями, "В"- заключение.

Если конъюнкция предпосылок, соединена с выводом знаком импликации, является всегда истинной формуле (тавтологией), то такой вывод называют правильным:

(А, Л А, Л... Л А) -" - всегда истинна формула.

Если же найдется такой набор значений истинности предпосылок и вывода, при котором формула принимает значение истинности "ложь", то такой вывод называют неправильным.

Итак, правильный вывод отличается от неправильного тем, что в нем между кон"юнкцією предпосылок и заключением существует отношение логического следования.

Из приведенных характеристик вывода логики высказываний вытекает процедура проверки его правильности. Для этого достаточно:

1. Формализовать все предпосылки и вывод.

2. Составить конъюнкцию формализованных оснований и соединить их с выводом знаком импликации.

3. Построить таблицу истинности полученной формулы. Если формула является всегда истинной, то вывод правильный, если нет, то вывод неправильный.

Условно-категорические выводы

а) Чисто условные.

Чисто условным называют вывод, в котором все основания и вывод являются условными высказываниями. Например:

Если успешно состава зимнюю сессию (А), то поеду в Карпаты (В). Если поеду в Карпаты (В), то обязательно побываю на Говерле (С). Если успешно состава зимнюю сессию (А), то обязательно побываю на Говерле (С).

Структура этого вывода такова: Если А, то В. Если И. то С. Если А, то С.

Формула логики высказываний: ((А -" В) А (-4 С)) -> (А -> С).

Эта формула всегда истинна или законом логики, поскольку структура этого вывода является правильной.

Вывод в чисто условном умозаключении основывается на правиле: следствие следствия есть следствием основания.

В чисто условном выводе существуют его разновидности (модусы). К ним относится, например, такой:

Если А, то В.

Если не А. то В.

Его формула: ((А -> В) Л (~А ->)- " В. Эта формула является законом логики (тавтологией). Например:

Если состав зачет по логике, то пойду в кино. Если не сдам зачет по логике, то пойду в кино. Пойду в кино.

б) Утвердительный модус

Эту фотопленку засвечено (А).

Эта фотопленка вышла из строя (В). Структура этого вывода: Если А, то В.

Его формула:

Как видим, формула логики высказываний, отражает данную структуру вывода, является всегда истинной или законом логики. Эту структуру вывода называют стверджувальним модусом (modus ponens) условно-категорического умозаключения, поскольку в ней от утверждения основания (А) переходят к утверждению следствия (В). Можно строить достоверные умозаключения от утверждения основания к утверждению следствия. При этом основания должны быть истинными.

Построим теперь наше рассуждение так:

Если засветить фотопленку (А), то она выйдет из строя (В).

Эта фотопленка вышла из строя (В).

Эту фотопленку было засвечено (А).

структура:

Если А, то В.

Формула логики высказываний:

Как видим, эта формула не является тавтологией. Итак, мы имеем дело с неправильной структурой вывода. Это означает, что вывод по этой структурой не является необходимым, то есть он не всегда будет давать истинные выводы. Нельзя строить достоверные умозаключения от утверждения следствия к утверждению основания. Этот модус условно-категорического умозаключения называют вероятным. Он не является законом логики.

с) Отрицательный модус.

Построим наше рассуждение таким образом:

Если засветить фотопленку (А), то она выйдет из строя (В).

Эту фотопленку не было засвечено (^А).

Структура этого рассуждения такова:

Если А, то В.

Ему соответствует формула логики высказываний: ((А -" В) Л~В) -> ~А. Эта формула является законом логики или всегда истинной формулой. Это разновидность условно-категорического умозаключения называют отрицательным модусом (modus tollem). Он устанавливает, что можно строить достоверные умозаключения от отрицания следствия к отрицанию основания. Не следует забывать, что предпосылки при этом должны быть истинными.

Наше рассуждение, наконец, можно построить и таким образом:

Если засветить фотопленку (А), то она выйдет из строя (В).

Эту фотопленку не засвечено (~А).

Эта фотопленка не вышла из строя (~В).

Структура этого умозаключения является следующей:

Если А, то В.

Этой структуре соответствует следующая формула логики высказываний: ((А -> В) Л-А) -" ~В. Исходя из соображений здравого смысла, если не засвечена фотопленка, это не всегда означает ее пригодность для использования. То есть эта структура не всегда дает необходимые выводы, ибо она является неправильной. А формула, которая ей соответствует, не является законом логики. Нельзя строить достоверные умозаключения от отрицания основания к отрицанию следствия. Этот модус условно-категорического умозаключения называют вероятным.

Современная символическая логика для анализа дедуктивных рассуждений стро­ит особые логические системы; одна из них называется логикой высказываний или пропозициональной логикой, другая - логикой предикатов. Рассмотрим кратко принципы построения логики высказываний.

Логика высказываний - это логическая система, которая анализирует процес­сы рассуждения, опираясь на истинностные характеристики логических связок и отвлекаясь от внутренней структуры суждений.

Язык логики высказываний включает: алфавит, определение правильно выстро­енных выражений, интерпретацию.

Алфавит логики высказываний состоит из следующих символов.

1) Символы для высказываний: р, q, r ... (пропозициональные переменные).

2) Символы для логических связок:

Ù - конъюнкция (союз «и»);

v - дизъюнкция (союз «или»);

® - импликация (союз «если..., то...»);

º - эквивалентность (союз «если и только если..., то...»); 1 ù ù- отрицание («неверно, что...»).

3) Технические знаки (,) - скобки.

Допустимые в логике высказываний выражения, называемые правильно постро­енными формулами, или сокращенно ППФ, вводятся следующим определением:

1. Всякая пропозициональная переменная - р, q, r ... - является ППФ.

2. Если А и В - ППФ (А и В - символы метаязыка для любых формул), то выражения - А Ù В, A v В, А ® В, А ºВ, ùА- также являются ППФ.

3. Все другие выражения, помимо предусмотренных п. 1 и 2, не являются ППФ языка логики высказываний.

Логика высказываний может строиться табличным методом или как исчисление, т.е. как система, позволяющая получать по правилам вывода из одних формул другие.

Табличное построение предполагает семантические определения пропозицио­нальных связок в виде матриц, показывающих зависимость истинного значения слож­ных формул от значений их составляющих простых формул. Если А и В простые формулы, то истинное значение построенных с помощью логических связок формул может быть представлено матричным способом - в виде таблицы (см. рис. 36).

Среди правильно построенных формул в зависимости от их истинностного значе­ния различают тождественно истинные, тождественно ложные и выполнимые фор­мулы.

Тождественно истинными называют формулы, принимающие значения истины при любых - истинных или ложных - значениях составляющих их пропозициональ­ных переменных. Такие формулы представляют собой законы логики.

Тождественно ложными называют формулы, принимающие значение ложности при любых - истинных или ложных - значениях пропозициональных переменных

Выполненными называют формулы, которые могут принимать значения истин­ности или ложности в зависимости от наборов значений составляющих их пропозици­ональных переменных.

Табличное построение предполагает определение логических отношений между формулами. Существенное значение для анализа рассуждений имеет отношение логического следования (символ |- ), которое определяется следующим образом. Из a 1 , ..., An как посылок логически следует В как заключение, если при истинности каждого Ai, ..., А п истинным является и В В языке-объекте отношение следования адекватно выражается импликацией. Значит, если a 1 , ..., A n |-В , то формула, пред­ставляющая собой импликацию вида (A 1 Ù А 2 Ù ... Ù А n) ® В , должна быть тождест­венной истинной.

Табличное построение логики высказываний позволяет определять логические отношения между высказываниями (см. гл. V § 4) и проверять правильность умозак­лючений, используя приведенный выше критерий. В качестве примера предлагаем провести табличным способом проверку правильности рассуждения формулы (р ®q) \- (ùq®ù р). Заменив знак логического следования между посылкой и заклю­чением на импликацию и построив таблицу для полученной формулы, видим, что она является тождественно истинной. Значит, рассуждение является правильным.

Если в рассуждении содержится более трех переменных, то строить полную таблицу для проверки его правильности затруднительно и тогда используют сокра­щенный метод проверки, рассуждая от противного. Поскольку при правильном рас­суждении формула вида (A 1 Ù .. Ù А n) ® В должна быть тождественно истинной, посмотрим, не может ли она при каком-то наборе значений переменных оказаться ложной. Допустим, что может. Если из этого допущения получим какое-нибудь про­тиворечие, то такое допущение будет неверным, а проверяемое рассуждение - пра­вильным. Если же из допущения не получаем противоречия, то обнаружим набор значений переменных, при котором формула ложна, т.е. тот набор, который опровер­гает проверяемое рассуждение

Логика высказываний как исчисление - это прежде всего так называемая систе­ма натурального вывода (СНВ). Аппаратом в ней служат правила вывода, каждое из которых является какой-нибудь элементарной формой умозаключения. Переходя по этим правилам от посылок или некоторых допущений к новым формулам, постепенно доходят до заключения. Вывод из посылок осуществлен, если удалось элиминировать все сделанные допущения. Таким образом, под выводом формулы В (заключения) из формул A 1 ,..., Ап (посылок) имеется в виду последовательность формул, каждая из которых является либо посылкой, либо допущением, либо получается по правилам вывода из предыдущих, и последняя формула этой последовательности есть форму­ла В, а все допущения при этом элиминированы.

Правила СНВ позволяют оперировать со всеми связками, имеющимися в алфа­вите языка. Они делятся на правила введения (в) и правила исключения (и) связок .


Конъюнкция:

Дизъюнкция:

Ùв А, В ; Ù и 1 АÙВ ; Ùи 2 АÙВ

А В AvB,ùA AvB,ù B

v в -- ; v в -- ; v и ---- ; v и
AvB AvB В А

Импликация:

A ® и A®B,ùB
Ú B B®A ùA
Отрицание:

ù и ù ù А

Эквиваленция:

º и АºВ

(А® В) Ù (В® А)

Кроме этих прямых правил получения новых строк вывода, в СНВ приняты непрямые правила, определяющие стратегию построения вывода. Например, если нужно вывести из посылок формулу вида импликации (x 1 ® (x 2 ®...(x n - 1 ® x n))) , то после выписывания посылок выписываются в качестве допущений все антецеденты заключения, начиная с антецедента главного знака импликации, т.е. x 1 , x 2 , х 3 ,..., x n - 1

Г,А->В

Если при этом удастся вывести х n , то по непрямому правилу ® в ------ собираем

Г®А®В

последовательно формулы: (x n - 1 ® x n) (при этом исключается допущение x n -1), (х n -2 ® (x n -1 ® x n)(x n -r исключается из числа допущений) и т.д., пока не получим требуемое заключение x 1 ®(x n -2 ®... (x n -1 ® x n). Это правило построения прямого вы­вода.

Приведем пример вывода с применением этого правила:

((pÙq)®r) |-_ (p® (q ®r)

1. (р Ù q) ® r - посылка

2. р - допущение

3. q - допущение

4. р Ù q (2, 3. Ù в)

5. r (1,4, ® n)

6.q®r(3,5,®в)(-3)

7.p®(q®r)(2,6,®в)(-2)

Другое непрямое правило используется для построения косвенного вывода, при котором допущением является отрицание В или отрицание последнего консеквента х n Г,А®(ВÙùВ)

Это правило имеет вид -------- и говорит о том, что если из

Г-> |А

каких-то формул (Г) и допущения (А) получено противоречие (В Ù ù В), то из этих формул следует ]А. Таким образом, если строится косвенный вывод формулы вида (x 1 ® (x 2 ® ...(x n -1 -> х n)...), то после посылок выписываются формулы:

Х 2

допущения

ù х n допущение косвенного доказательства [ДКД]


атем по правилам вывода получаем следствия из всех имеющихся посылок и допущений до тех пор, пока не получим две противоречащие друг другу формулы "(В и 1в), что свидетельствует о несовместимости допущения косвенного доказательства с другими допущениями и посылками. Отсюда делается вывод о его ложности. Тогда в вывод вписывается строка 1]х п, и тем самым допущение косвенного доказательства исключается. Например, осуществим косвенный вывод: (р ® q) ½- (ù q ®ù p)

1 . р ® q - посылка

2. ù q - допущение

3. ù ù р дкд

4.р(3,] и)

5. q (1,4,® и)

6.q Ù ù q(5,2, Ù в)

7. ù ù ù p (6,3, ù в)(-3)

8. ù p (7, ù и)

9. ù q ® ù p (2,8, ® и)(-2)

Косвенный вывод считается законченным, если в ходе вывода получена какая-то формула и ее отрицание, т.е. противоречие. Таким образом, если строится косвенный вывод формулы вида x 1 ® (x 2 ®... ® х n ), то построчно выписывают все антецеденты от x 1 до X n -1 в качестве допущений; в последней строчке выписывают отрицание последнего консеквента - ] х n как допущение косвенного вывода. По правилам вывода получаем различные следствия из всех имеющихся посылок и допущений. Получение двух противоречащих следствий говорит о ложности допущения косвен­ного вывода. На этом основании ДКД отрицается, т.е. получаем двойное отрицание. Снятие двойного отрицания дает формулу х n .

Основными логическими свойствами системы натурального вывода являются ее непротиворечивость и полнота.

Непротиворечивость означает, что из истинных посылок могут получаться толь­ко истинные следствия и если формула выводима из пустого множества посылок, то она тождественно истинна. Это исключает возможность вывести из пустого множест­ва посылок какую-либо формулу (А ) и ее отрицание (ù А ).

Полнота системы означает, что дедуктивных ее средств достаточно, чтобы вы­вести из пустого множества посылок любую тождественно истинную формулу.

Логика предикатов является более общей логической системой и включает логику высказываний как свою часть Она располагает более эффективными логическими средствами для анализа рассуждений в естественном языке.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. На какие виды делятся выводы из сложных суждений?

2. Как строятся чисто условные умозаключения?

3. Что такое условно-категорическое умозаключение? Назовите его правильные модусы, выразите их в символической записи.

4. Какое умозаключение называется разделительно-категорическим? Назовите его модусы, выразите их в символической записи.

5. Укажите условия правильности выводов по утверждающе-отрицающему и от-рицающе-утверждающему модусам разделительно-категорического умозаключения.

6. Какое умозаключение называется условно-разделительным (леммантичес-ким)? Какие модусы имеет дилемма?

7. Что такое энтимема?

8. Каковы принципы построения логики высказываний?

9. Покажите значение различных видов условных и разделительных умозаключе­ний в работе юриста.


Свойства основных понятий раскрываются в аксиомах - предложениях, принимаемых без доказательства.


Например, в школьной геометрии есть аксиомы: «через любые две точки можно провести прямую и только одну» или «прямая разбивает плоскость на две полуплоскости».


Система аксиом любой математической теории, раскрывая свойства основных понятий, дает их определения. Такие определения называют аксиоматическими.


Доказываемые свойства понятий называют теоремами , следствиями, признаками, формулами, правилами.


Доказать теорему А В - это значит установить логическим путем, что всегда, когда выполняется свойство А , будет выполняться свойство В.


Доказательством в математике называют конечную последовательность предложений данной теории, каждое из которых либо является аксиомой, либо выводится из одного или нескольких предложений этой последовательности по правилам логического вывода.


В основе доказательства лежит рассуждение - логическая операция, в результате которой из одного или нескольких взаимосвязанных по смыслу предложений получается предложение, содержащее новое знание.


В качестве примера рассмотрим рассуждение школьника, которому надо установить отношение «меньше» между числами 7 и 8. Учащийся говорит: «7 < 8, потому что при счете 7 называют раньше, чем 8».


Выясним, на какие факты опирается вывод, полученный в этом рассуждении.


Таких фактов два: Первый: если число а при счете называют раньше числа b , то a < b . Второй: 7 при счете называют раньше, чем 8.


Первое предложение носит общий характер, так как содержит квантор общности - его называют общей посылкой. Второе предложение касается конкретных чисел 7 и 8 - его называют частной посылкой. Из двух посылок получен новый факт: 7 < 8, его называют заключением.


Между посылками и заключением существует определенная связь, благодаря которой они и составляют рассуждение.


Рассуждение, между посылками и заключением которого имеет место отношение следования, называют дедуктивным.


В логике вместо термина «рассуждения» чаще используется слово «умозаключение».


Умозаключение - это способ получения нового знания на основе некоторого имеющегося.


Умозаключение состоит из посылок и заключения.


Посылки - это , содержащие исходное знание.


Заключение - это высказывание, содержащее новое знание, полученное из исходного.


Как правило, заключение отделяется от посылок с помощью слов «следовательно», «значит». Умозаключение с посылками р 1, р 2, …, рn и заключением Р будем записывать в виде: или 1, р 2, …, рn) Р.


Примеры умозаключений: а) Число а = b. Число b = с . Следовательно, число а = с.


b) Если в дроби числитель меньше знаменателя, то дробь правильная. В дроби числитель меньше знаменателя (5<6) . Следовательно, дробь - правильная.


с) Если идет дождь, то на небе есть тучи. На небе есть тучи, следовательно, идет дождь.


Умозаключения могут быть правильными и неправильными.


Умозаключение называется правильным, если формула, соответствующая его структуре и представляющая собой конъюнкцию посылок, соединенная с заключением знаком импликации тождественно истинна.


Для того чтобы установить, является ли умозаключение правильным, поступают следующим образом:


1) формализуют все посылки и заключение;


2) записывают формулу, представляющую конъюнкцию посылок, соединенную знаком импликации с заключением;


3) составляют таблицу истинности для данной формулы;


4) если формула тождественно-истинна, то умозаключение правильное, если нет - то умозаключение неправильное.


В логике считают, что правильность умозаключения определяется его формой и не зависит от конкретного содержания входящих в него утверждений. И в логике предлагаются такие правила, соблюдая которые, можно строить дедуктивные умозаключения. Эти правила называют правилами вывода или схемами дедуктивных рассуждений.


Правил много, но наиболее часто используются следующие:


1. - правило заключения;


2. - правило отрицания;


3. - правило силлогизма.


Приведем пример умозаключения, выполненного по правилу заключения: «Если запись числа х оканчивается цифрой 5, то число х делится на 15. Запись числа 135 оканчивается цифрой 5 . Следовательно, число 135 делится на 5 ».


В качестве общей посылки в этом умозаключении выступает утверждение «если А(х), то В(х) », где А(х) - это «запись числа х оканчивается цифрой 5 », а В(х) - «число х делится на 5 ». Частная посылка представляет собой высказывание, которое получилось из условия общей посылки при
х = 135 (т.е. А(135) ). Заключение является высказыванием, полученным из В(х) при х = 135 (т.е. В(135) ).


Приведем примерумозаключения, выполненного по правилу отрицания: «Если запись числа х оканчивается цифрой 5, то число х делится на 5 . Число 177 не делится на 5 . Следовательно, оно не оканчивается цифрой 5 ».


Видим, что в этом умозаключении общая посылка такая же как и в предыдущем, а частная представляет собой отрицание высказывания «число 177 делится на 5 » (т.е. ). Заключение - это отрицание предложения «Запись числа 177 оканчивается цифрой 5 » (т.е. ).


И наконец, рассмотрим пример умозаключения, построенного по правилу силлогизма : «Если число х кратно 12, то оно кратно 6. Если число х кратно 6 , то оно кратно 3 . Следовательно, если число х кратно 12, то оно кратно 3 ».


В этом умозаключении две посылки: «если А(х), то В(х) » и «если В(х), то С(х) », где А(х) - «число х кратно 12 », В(х) - «число х кратно 6 » и С(х) - «число х кратно 3 ». Заключение представляет собой высказывание «если А(х), то С(х) ».


Проверим, правильны ли следующие умозаключения:


1) Если четырехугольник - ромб, то его диагонали взаимно перпендикулярны. АВС D - ромб. Следовательно, его диагонали взаимно перпендикулярны.


2) Если число делится на 4 , то оно делится на 2 . Число 22 делится на 2 . Следовательно, оно делится на 4.


3) Все деревья являются растениями. Сосна - дерево. Значит, сосна - растение.


4) Все учащиеся данного класса ходили в театр. Петя не был в театре. Следовательно, Петя - учащийся не данного класса.


5) Если числитель дроби меньше знаменателя, то дробь правильная. Если дробь правильная, то она меньше 1. Следовательно, если числитель дроби меньше знаменателя, то дробь меньше 1.


Решение: 1) Для решения вопроса о правильности умозаключения выявим его логическую форму. Введем обозначения: С(х) - «четырехугольник х - ромб», В(х) - «в четырехугольнике х диагонали взаимно перпендикулярны». Тогда первую посылку можно записать в виде:
С(х) В(х), вторую - С(а), а заключение В(а).


Таким образом, форма данного умозаключения такова: . Оно построено по правилу заключения. Следовательно, данное рассуждение правильное.


2) Введем обозначения: А(х) - «число х делится на 4 », В(х) - «число х делится на 2 ». Тогда первую посылку запишем: А(х) В(х), вторую В(а), а заключение - А(а). Умозаключение примет форму: .


Такой логической формы среди известных нет. Легко заметить, что обе посылки истинны, а заключение ложно.


Значит, что данное рассуждение неправильное.


3) Введем обозначения. Пусть А(х) - «если х дерево», В(х) - «х растение». Тогда посылки примут вид: А(х) В(х), А(а), а заключение В(а). Наше умозаключение построено по форме: - правила заключения.


Значит, наше рассуждение построено верно.


4) Пусть А(х) - «х - учащиеся нашего класса», В(х) - «учащиеся х ходили в театр». Тогда посылки будут следующими: А(х) В(х), , а заключение .


Данное умозаключение построено по правилу отрицания:


- значит оно верное.


5) Выявим логическую форму умозаключения. Пусть А(х) - «числитель дроби х меньше знаменателя». В(х) - «дробь х - правильная». С(х) - «дробь х меньше 1 ». Тогда посылки примут вид: А(х) В(х), В(х) С(х), а заключение А(х) С(х).


Наше умозаключение будет следующей логической формы: - правило силлогизма.


Значит, данное умозаключение верно.


В логике рассматривают различные способы проверки правильности умозаключений, среди которых анализ правильности умозаключений с помощью кругов Эйлера. Его проводят следующим образом: записывают умозаключение на теоретико-множественном языке; изображают посылки на кругах Эйлера, считая их истинными; смотрят, всегда ли при этом истинно заключение. Если да, то говорят, что умозаключение построено правильно. Если же возможен рисунок, из которого видно, что заключение ложно, то говорят, что умозаключение неправильно.


Таблица 9


























Словесная формулировка предложения



Запись на теоретико- множественном языке



Изображение на кругах Эйлера



Всякое А есть В










Некоторые А есть В


Некоторые А не есть В



























Ни одно А не есть В


























а есть А












а не есть А












Покажем, что умозаключение, выполненное по правилу заключения, является дедуктивным. Сначала запишем это правило на теоретико-множественном языке.


Посылка А(х) В(х) может быть записана в виде ТА ТВ , где ТА и ТВ - множества истинности высказывательных форм А(х) и В(х).


Частная посылка А(а) означает, что а ТА, а заключение В(а) показывает, что а ТВ.


Все умозаключение, построенное по правилу заключения, запишется на теоретико-множественном языке так: .



































Изобразив на кругах Эйлера множества ТА и ТВ и обозначив элемент а ТА, мы увидим, что а ТВ (рис. 58). Значит, а Т аТ .










Рис. 58.


Примеры.


1. Правильно ли умозаключение «Если запись числа оканчивается цифрой 5, то число делится на 5. Число 125 делится на 5. Следовательно, запись числа 125 оканчивается цифрой 5 »?


Решение: Это умозаключение выполнено по схеме , что соответствует . Такой схемы среди известных нам нет. Выясним, является ли она правилом дедуктивного умозаключения?


Воспользуемся кругами Эйлера. На теоретико-множественном языке


полученное правило можно записать так:


. Изобразим на кругах Эйлера множества ТА и ТВ и обозначим элемент а из множества ТВ.


Оказывается, что он может содержаться в множестве ТА, а может и не принадлежать ему (рис. 59). В логике считают, что такая схема не является правилом дедуктивного умозаключения, так как не гарантирует истинности заключения.


Данное умозаключение не является правильным, так как выполнено по схеме, не гарантирующей истинности рассуждения.


























Рис. 59.


б) Все глаголы отвечают на вопрос «что делать?» или «что сделать?». Слово «василек» не отвечает ни на один из этих вопросов. Следовательно, «василек» не является глаголом.


Решение: а) Запишем данное умозаключение на теоретико-множественном языке. Обозначим через А - множество студентов педагогического факультета, через В - множество студентов, являющихся учителями, через С - множество студентов, старше 20 лет.


Тогда умозаключение примет вид: .


Если изобразить данные множества на кругах, то возможно 2 случая:


1) множества А, В, С пересекаются;


2) множество В пересекается с множеством С и А, а множество А пересекается с В , но не пересекается с С.

б) Обозначим через А множество глаголов, а через В множество слов, отвечающих на вопрос «что делать?» или «что сделать?».


Тогда умозаключение можно записать в следующем виде:







Рассмотрим несколько примеров.


Пример 1. Ученику предлагается объяснить, почему число 23 можно представить в виде суммы 20 + 3. Он рассуждает: «Число 23 - двузначное. Любое двузначное число можно представить в виде суммы разрядных слагаемых. Следовательно, 23 = 20 + 3».


Первое и второе предложения в этом умозаключении посылки, причем одна общего характера - это высказывание «любое двузначное число можно представить в виде суммы разрядных слагаемых», а другая - частная, она характеризует только число 23 - оно двузначное. Заключение - это предложение, которое стоит после слова «следовательно», - также носит частный характер, так как в нем речь идет о конкретном числе 23.


Умозаключения, которые обычно используются при доказательствах теорем, основаны на понятии логического следования. При этом из определения логического следования вытекает, что при всех значениях высказывательных переменных, при которых истинны исходные высказывания (посылки), истинно и заключение теоремы. Такие умозаключения дедуктивные.


В примере, рассмотренном выше, приведенное умозаключение является дедуктивным.


Пример 2. Один из приемов ознакомления младших школьников с переместительным свойством умножения заключается в следующем. Используя различные средства наглядности, школьники вместе с учителем устанавливают, что, например, 6 3 = 36, 52 = 25. Затем на основе полученных равенств делают вывод: для всех натуральных чисел a и b верно равенство ab = ba.


В данном умозаключении посылками являются первые два равенства. В них утверждается, что для конкретных натуральных чисел выполняется такое свойство. Заключением в данном примере является утверждение общего характера - переместительное свойство умножения натуральных чисел.


В данном умозаключении посылки частного характера показывают, что некоторые натуральные числа обладают свойством: от перестановки множителей произведение не изменяется. И на этой основе сделан вывод, что этим свойством обладают все натуральные числа. Такие умозаключения называют неполной индукцией.

т.е. для некоторых натуральных чисел можно утверждать, что сумма меньше их произведения. Значит, на основании, что некоторые числа обладают данным свойством, можно сделать вывод, что этим свойством обладают все натуральные числа:


Данный пример - это пример рассуждения по аналогии.


Под аналогией понимают умозаключение, в котором на основании сходства двух объектов в некоторых признаках и при наличии дополнительного признака у одного из них делается вывод о наличии такого же признака у другого объекта.


Вывод по аналогии носит характер предположения, гипотезы и поэтому нуждается либо в доказательстве, либо в опровержении.