Домой / Кровля / Что характеризует белковый обмен. Обмен белков — все, что нужно знать об этом процессе. Методы изучения делятся на

Что характеризует белковый обмен. Обмен белков — все, что нужно знать об этом процессе. Методы изучения делятся на

Как однажды сказал знаменитый немецкий философ Фридрих Энгельс: «Жизнь – это форма существования белковых тел». Этим он хотел сказать, что наша жизнь невозможна без белков, так как они являются главным строительным материалом в нашем организме и участвуют во всех обменных процессах.

Белки, или протеины (от греческого protos– самый важный, первый) это самое сложное органическое соединение, которое играет важнейшую роль во всех процессах жизнедеятельности. Белки состоят из аминокислот, которые соединены между собой пептидными связями. Размеры молекулы белка огромные по сравнению со всеми остальными веществами.

Белки бывают простыми и сложными. Простые белки это протеины, а сложные протеиды. Отличие протеинов от протеидов заключается в более сложном составе последних. Кроме аминокислот, протеиды также включают в себя другие соединения. Например, протеид гемоглобин кроме аминокислот содержит в себе гема-вещества.

Белки бывают полноценными и неполноценными. Полноценные белки содержат незаменимые аминокислоты, а в неполноценных отсутствует какая-либо незаменимая аминокислота.

Биологические функции белка :

— формирует вещество соединительной ткани, например, коллаген, эластин;

— регулирует обмен веществ (например, гормоны инсулин и глюкагон являются белками);

— транспорт веществ в крови (например, транспорт кислорода – гемоглобин, транспорт жира – липопротеиды и т.д.);

— при длительном голодании белки могут выступать в качестве питания для развивающихся клеток и в качестве источника энергии;

— обеспечивают мышечное сокращение;

— участвует в обезвреживании чужих антигенов (иммуноглобулины, комплемент);

— участвует в остановке кровотечения, образовании тромба и др.

Это далеко не весь список биологических функций белков.

Что такое аминокислоты?

Аминокислоты это органические соединения, которые содержат группу амина и кислотную группу. Всего существует 22 аминокислоты, 10 из которых являются незаменимыми. Что значит незаменимая аминокислота? Это значит, что она не может воспроизводиться в организме человека и должна поступать только с пищей. Остальные аминокислоты могут образовываться в организме из различных групп других аминокислот.

Незаменимые аминокислоты содержатся в животных и некоторых растительных продуктах, например, в мясе, рыбе, яйцах, твороге, молочных и т.д.

К незаменимым аминокислотам относятся : лейцин, валин, треонин, изолейцин, метионин, триптофан, лизин, гистидин, аргинин, фенилаланин.

Есть также группа полузаменимых аминокислот, это аминокислоты, которые могут синтезироваться в организме, но в недостаточном количестве.

Пищеварение белков

Пищеварение белков начинается в желудке. Здесь, под воздействием фермента пепсина в условиях присутствия соляной кислоты, которая выделяется желудочными железами, начинается переваривание белков. Здесь сложные органические соединения белки расщепляются на крупные «осколки» — высокомолекулярные пептиды. Далее эти вещества попадают в кишечник, где подвергаются дальнейшим превращениям. Под воздействием ферментов трипсина, пептидаз и химотрипсина высокомолекулярные белки превращаются в низкомолекулярные и некоторое количество аминокислот. В тонком кишечнике начинает действовать фермент карбоксипептидаз А и В, который превращает низкомолекулярные белки в дипептиды, которые, под воздействием дипептидаз, расщепляются до аминокислот. Аминокислоты в свою очередь всасываются кишечными ворсинками и попадают в кровь и лимфу, где отправляются в печень для синтеза белка и в ткани тела.

Часть аминокислот и непереваренные белки подвергаются гниению в нижних отделах кишечника. Некоторые аминокислоты при этом выделяют ядовитые продукты типа амина, фенола, меркаптана. Они частично выводятся с калом и кишечными газами, частично попадают в кровь, где успешно обезвреживаются печенью.

Вообще распад белка всегда происходит с образованием аммиака и азотистых соединений. Эти ядовитые вещества также обезвреживаются печенью, и также успешно выводятся почками и потовыми железами. Чтобы не возникало накопления ядовитых веществ в крови, не было излишней нагрузки на почки и печень, или же наоборот, не было дефицита белка и аминокислот, необходимо всегда следить за балансом белка. Количество поступаемого белка, должно быть равно количеству расходуемого белка. Если это растущий организм ребенка или подростка, или человек, набирающий мышечную массу, то поступление белка должно превышать расход, но в разумных пределах.

Как это определить?

Азотистое равновесие (Азотистый баланс)

В среднем в белках количество азота составляет 16%. Азот в организме не подвергается никакому расщеплению или окислению и выводится в том же виде, в каком и поступил (главным образом с мочой). В результате, о количестве употребленного и израсходованного белка можно судить по количеству азота в пище и в выделениях. Это и есть азотистое равновесие.

Конечно, не так много людей могут или просто не готовы следить за белковым равновесием таким способом. Точного значения суточной потребности организма в белке нет. Многие ученые выводили различные формулы, но ни одна из них не принята за основу. Например, ВОЗ (Всемирная Организация Здравоохранения) рекомендует употреблять 0.75 гр. на 1 кг веса в сутки . Наш Роспотребнадзор рекомендует от 60 до 120 гр. в сутки . Многие спортсмены бодибилдеры рекомендуют употреблять от 2 до 4 гр. на 1 кг веса .

Здесь выбор остается за человеком.

О том, сколько белка стоит употреблять для достижения различных целей, мы поговорим в следующих статьях.

Одной из важнейших макромолекулярных групп в организме человека являются белки. Причем, их формы отличаются большим разнообразием: рецепторы клеточного типа, молекулы сигнального типа, элементы образующие структуру, определенные ферменты, вещества переносящие кислород и углекислый газ (речь идет о гемоглобине). И это далеко не весь перечень. Именно белок является одним их основных элементов в костном составе, его активное участие присутствует в строении связок, мышц, ткани организма, благодаря ему активно растут и восстанавливаются. Так что роль белков в организме человека, в обмене веществ переоценить трудно.

Однако, на всем вышеперечисленном функции белка не ограничиваются, дело в том, что именно такое вещество является незаменимым энергетическим источником. Есть ещё характерная особенность подобных веществ — организму человек по ряду причин не удается сохранять из про запас, поэтому, для того, что человеческий организм функционировал в нормальном режиме, надо потреблять белки на постоянной основе, только тогда белковый обмен будет в норме.

Если говорить о том, где начинается метаболизм белков, то все это начинается в районе желудка человека. Процесс носит следующий характер:

  • еда, которая содержит много белка, начинает попадать в желудок человека, там первым делом начинает функционировать фермент под названием пепсин, а также к делу подключается соляная кислота;
  • именно соляная кислота осуществляет обеспечение того уровня, в котором белки могут денатурироваться. Когда на них оказывает свое воздействие пепсин, то белки начинают процесс распада, при этом образуются полипептиды, а также аминокислоты, которые являются их составляющими;
  • потом пищевая кашица, которая называется химус оказывается в тонком кишечнике;
  • начинает работать поджелудочная железа, выделяющая сок с содержанием натриевого бикорбаната (речь идет о соде);
  • соляная кислота нейтрализуется, что обеспечивает надежную защиту для кишечника человека.

Очень важно отметить, что организм имеет возможность для процесса синтезирования необходимых для его нормальной деятельности белков из аминокислот.

Все это получается из продуктов питания, те белки, которые оказываются в таком процессе лишними, просто начинают постепенно превращаться в глюкозу, также может быть превращение в триглецириды. Они имеют очень важную функцию — поддерживают энергию, а также способствуют увеличению резерва энергии в организме человека.

Тонкий кишечник отличается ещё и тем, что именно в нем начинают выделительные процессы гормоны пищеварительного типа, при этом выделяется секретин, а именно такие вещества способствуют дальнейшему белковому расщеплению. А ещё секретин осуществляет стимуляцию секреции сока железы поджелудочного типа, она тоже может осуществлять выработку большего числа элементов пищеварения.

Здесь выделяются такие вещества, как протеаза, эластаза и трипсин, а все это помогает лучше перевариваться белкам. Когда такие ферменты собираются вместе, белки сложного состава начинают разбиваться на определенные аминокислоты. Их транспортировка осуществляется через кишечную слизистую, её предназначение нужно для синтеза иных белковых соединений, потом они конвертируются в жиры.

Какова роль гормонов и ферментом в белковом обмене

Такой сложный процесс, как обмен белков не может осуществляться без определенных ферментов и гормонов. Об из функциях следует рассказать подробнее:

  • роль ферментов в тонком кишечнике и желудке такова, что белки начинают расщепляться на аминокислотные части;
  • HCI в области желудка помогают развиваться протеолизу;
  • гормоны, которые секретируются кишечными клетками осуществляет регулирование пищеварительного процесса.

Белковые вещества, которые находятся в поджелудочной железе и тонком кишечнике, не должны расщепляться. Для предотвращения этого процесса железа поджелудочного типа осуществляет выработку проферементов, которые не являются активными. Внутри везикул поджелудочной железы имеются такие вещества, как:

  • трипсин;
  • химитрипсин;
  • химотрипсиноген.

После того, как в тонкий кишечник попадает фермент, который располагается в пределах стенок тонкого кишечника, начинается его связь с трипсиногеном, после чего начинается активная форма, то есть, трипсин. Потом, начинается трансформация его в активную форму, то есть, в тринотрипсин. Функция такая веществ заключается в том, что они расщепляют белки крупного размера на пептиды, это осуществляется в процессе протеолиза.

Потом такие маленькие пептиды тоже начинают расщепляться на определенные аминокислоты, начинается их транспортировка через поверхностную часть кишечной слизистой, при этом используются аминокислотные транспортеры. Роль таких транспортеров заключается в том, чтобы связывать натрий и аминокислоты, потом они переносятся через оболочку. Когда натрий и аминокислоты оказывается на клеточной поверхности базального типа, то они начинают свое высвобождение.

Примечательно, что использование натрия, как транспортера, может быть использовано неоднократно, а что касается аминокислот, то они начинают свое проникновение в кровоток, потом начинается транспортировка к области печени, а также во всю клеточную структуру организма человека для того, чтобы синтезировать белки.

Если говорить о свободных аминокислотах, то они применяются для процесса синтеза белковых соединений нового типа. Если в организме аминокислот становится слишком много, причем, настолько много, что их хранить становится просто невозможно, то начинается их конвертация в глюкозу, также конвертация может быть в кетоны, а если все это не подходит, то тогда начинается процесс расщепления. Когда аминокислоты расщепляются, то получаются соединения углеводородного типа или же шлаки азотистого типа.

Но нужно понимать, что если наблюдаются высокая концентрация азота, то это может носить токсичный характер, так что сначала он проходит соответствующую обработку, благодаря которой из организма азот выводится. Такая биохимия процесса носит сложный характер, но очень слаженный, если такая биохимия подвергается нарушениям, то последствия могут быть самыми негативными. Если замечаются любые негативные симптомы, даже самые незначительные, то необходимо своевременно сдать определенные анализы, здесь может быть биохимическое исследование крови и ряд иных исследований.

Как образуется мочевина

Обмен белков подразумевает такой процесс, как цикл орнитинового типа, то есть образование мочевины. Здесь речь идет о биохимическом комплексе, в котором происходит образование мочевины из аммониевых ионов. Это необходимо для того, чтобы не было допущено повышения концентрации аммония в человеческом организме, когда он может достигнуть критического уровня. Такой процесс в основном проходить в районе печени, также задействуется и почечная область.

Результатом такого сложного и слаженного процесса начинается молекулярное образование, причем, образуются такие молекулы, которые нужны для нормального функционирования цикла Кребса. Все это приводит к тому, что начинает образовываться вода и мочевина. А что касается вывода мочевины, то этот процесс осуществляется посредством почек, она входит в состав урины.

Для того, чтобы были дополнительные энергетические источники, не редко задействуются аминокислоты, это особенно актуально, когда начинается период голода. Дело в том, что когда аминокислоты начинают обрабатываться, то получаются продукты метаболизма, которые имеют форму промежуточного характера. Здесь может иметь место кислота пировиноградного типа и другие вещества, все это требует дополнительных энергетических источников и вот здесь существенную поддержку способны оказать аминокислоты.

Подводя итог, можно сказать, что в результате белкового метаболизма аминокислоты нужны для того, чтобы синтезировать белковые соединения, которые необходимы для нормальной деятельности организма человека. Также они могут быть использованы в качестве альтернативных энергетических источников, также они могут просто выводиться, поскольку в них больше нет никакой необходимости, и в организме человека их хранить не стоит. Так что, для нормально роста и функционирования человеческого организма белки просто необходимы, они способны эффективно восстанавливать тканевые соединения и поддерживают здоровье человека в полном порядке. Также для этого нужны протеины, витамины и минералы.


Белки - одна из важнейших групп макромолекул в организме человека, представленных в целом разнообразии форм: клеточные рецепторы, сигнальные молекулы, структурные элементы, ферменты, переносчики кислорода и углекислого газа (гемоглобин) - и это далеко не полный список. Белок является составной частью костей, мышц, связок, служит для роста и восстановления тканей организма.

Помимо этих функций, белки также могут использоваться в качестве источника энергии. Важной особенностью метаболизма белков является неспособность организма хранить их про запас, потому очень важно постоянно употреблять белки с пищей.

Описание метаболизма белков в организме человека

Метаболизм белков начинается в желудке. Когда богатая белком пища попадает в желудок, ее «встречает» фермент пепсин и соляная кислота (HCl, 05%), которая обеспечивает уровень рН 1,5 - 3,5, в котором белки денатурируются. Под воздействием пепсина белки распадаются на полипептиды и составляющие их аминокислоты.

Когда химус (пищевая кашица) попадает в тонкий кишечник, поджелудочная железа выделяет сок с содержанием бикарбоната натрия (соды), который нейтрализует соляную кислоту. Это помогает защитить оболочку кишечника.

Организм синтезирует нужные ему белки из аминокислот, которые мы получаем из продуктов питания, а ненужные белки превращаются в глюкозу или триглицериды и используются для поддержания энергии или увеличения энергетического резерва организма.

Также в тонком кишечнике выделяются пищеварительные гормоны, в том числе секретин и холецистокинин, которые стимулируют дальнейшее расщепление белков. Секретин также стимулирует секрецию сока поджелудочной железы, которая также вырабатывает большинство пищеварительных ферментов, в т.ч. протеазу, трипсин, химотрипсин и эластазу, которые способствуют перевариванию белков.

Вместе эти ферменты «разбивают» сложные белки на отдельные аминоксилоты, которые транспортируются через слизистую кишечника и используются для синтеза новых белков или конвертации в жиры или ацетил-коэнзим А и используются в цикле Кребса .

Роль пищеварительных ферментов и гормонов в метаболизме белков

Ферменты в желудке и тонком кишечнике расщепляют белки на аминокислоты. НСl в желудке способствует протеолизу, а секретируемые клетками кишечника гормоны регулируют процесс пищеварения.

Чтобы белки поджелудочной железы и тонкого кишечника не расщеплялись, поджелудочная железа также вырабатывает неактивные проферменты, которые активируются только в тонком кишечнике. В поджелудочной железе внутри везикул содержится трипсин, химитрипсин в форме трипсиногена и химотрипсиногена.

После попадания в тонкий кишечник фермент, находящийся в стенках тонкого кишечника (энтерокиназа), связывается с трипсиногеном и превращает его в активную форму - трипсин. После этого трипсин связывается с химотрипсиногеном и конвертирует его в активную форму - химотрипсин.

Трипсин и химиотрипсин расщепляют большие белки на меньшие пептиды в процессе протеолиза. Эти небольшие пептиды расщепляются на составляющие аминокислоты, которые транспортируются через апикальную поверхность слизистой кишечника при помощи транпортеров аминокислот.

Эти транспортеры связывают натрий и аминокислоту, после чего переносят ее через оболочку. На базальной поверхности клеток слизистой оболочки натрий и аминокислота высвобождаются. Натрий может повторно использоваться в качестве транспортера, а аминокислоты проникают в кровоток и транспортируются к печени и во все клетки организма для синтеза белков.

Свободные аминокислоты используются для синтеза новых белков. В случае избытка аминокислот организм, не имея механизма их хранения, конвертирует их в глюкозу или кетоны или же расщепляет. В результате расщепления аминокислот образуются углеводороды и азотистые шлаки. Однако азот в высоких концентрациях токсичен, потому в ходе орнитинового цикла он обрабатывается, что способствует выведению азота из организма.

Свободные аминокислоты используются для синтеза новых белков. В случае избытка аминокислот организм, не имея механизма их хранения, конвертирует их в глюкозу или кетоны или же расщепляет.

Орнитиновый цикл - цикл образования мочевины

Орнитиновый цикл - это комплекс биохимический реакций, в результате которого из ионов аммония образуется мочевина с целью предотвращения повышения концентрации аммония в организме до критического уровня. Цикл в большей степени протекает в печени, и в меньшей - в почках.

До начала орнитинового цикла ионы аммония образуются в результате расщепления аминокислот вследствие переноса аминогруппы с аминокислоты на кетокислоту.

В результате такого трансаминирования образуется молекула, необходимая для цикла Кребса, и ион аммония, который входит в орнитиновый цикл и выводится из организма, объединяясь с СО 2 , в результате чего образуется мочевина и вода. В свою очередь, мочевина выводится почками в составе мочи.

Аминокислоты также могут использоваться в качестве источника энергии, в особенности в период голодания. Поскольку в процессе обработки аминокислот образуются промежуточные продукты метаболизма, в том числе пировиноградная кислота, ацетил-коэнзим А, ацетоацетил-КоА, оксалоацетат и альфа-кетоглутарат, аминокислоты могут служить источником энергии, выделяемой в ходе цикла Кребса.

Таким образом, образующиеся в результате метаболизма белков аминокислоты используются либо для синтеза необходимых организму белков, либо используются для получения энергии, либо выводятся за ненадобностью, но не хранятся в организме. Поэтому достаточное количество белков в рационе питания очень важно для роста, восстановления тканей и поддержания состояния здоровья.

Реферат

Курсовая работа: 34 с., 12 источников, 5 рисунков

Объект исследования – Белковый обмен в организме человека.

Цель работы – исследование нарушения белкового обмена в организме человека.

Метод исследования – описательный

валин, треонин, фенилаланин, аргинин, цистин, тирозин, аланин, серин, Белок, аминокислоты, гемоглобин, пуринових, инацина, гидрофильность, ураты, креатинина

Введение

1. Обмен белков

1.1 Промежуточный обмен белков

1.2 Роль печени и почек в обмене белков

1.3 Обмен сложных белков

1.4 Баланс азотистого обмена

1.5 Нормы белков в питании

1.6 Регуляция белкового обмена

2. Тканевой обмен аминокислот

2.1 Участие аминокислот в процессах биосин­теза

2.2 Участие аминокислот в процессах катаболизма

2.3 Образование конечных продуктов обмена про­стых белков

3 Тканевой обмен нуклеотидов

3.1 Синтез ДНК и РНК

3.2 Катаболизм ДНК и РНК

4 Регуляция процессов азотистого обмена

5 Радиоизотопное исследование азотистого обмена

6 Патология азотистого обмена

6.1 Белковая недостаточность

6.2 Патология обмена аминоки­слот

7 Азотистый обмен в облученном организме

8 Изменение азотистого обмена в процессе старения

Литература

ВВЕДЕНИЕ

Организм человека состоит из белков (19,6 %), жиров (14,7 %), углеводов (1 %), минеральных веществ (4,9 %), воды (58,8%). Он постоянно расходует эти вещества на образование энергии, необходимой для функционирования внутренних органов, поддержания тепла и осу­ществления всех жизненных процессов, в том числе физи­ческой и умственной работы.

Одновременно происходят восстановление и создание клеток и тканей, из которых построен организм человека, восполнение расходуемой энергии за счет веществ, посту­пающих с пищей. К таким веществам относят белки, жи­ры, углеводы, минеральные вещества, витамины, воду и др., их называют пищевыми. Следовательно, пища для организма является источником энергии и пластических (строительных) материалов.

Это сложные органические соединения из аминокис­лот, в состав которых входят углерод (50-55%), водород (6-7 %), кислород (19-24 %), азот (15-19 %), а также могут входить фосфор, сера, железо и другие элементы.

Белки - наиболее важные биологические вещества живых организмов. Они служат основным пластическим материалом, из которого строятся клетки, ткани и органы тела человека. Белки составляют основу гормонов, фер­ментов, антител и других образований, выполняющих сложные функции в жизни человека (пищеварение, рост, размножение, иммунитет и др.), способствуют нормаль­ному обмену в организме витаминов и минеральных солей. Белки участвуют в образовании энергии, особенно в период больших энергетических затрат или при недоста­точном количестве в питании углеводов и жиров. Энергетическая ценность 1 г белка составляет 4 ккал (16,7 кДж).

При недостатке белков в организме возникают серьез­ные нарушения: замедление роста и развития детей, изменения в печени взрослых, деятельности желез вну­тренней секреции, состава крови, ослабление умственной деятельности, снижение работоспособности и сопротив­ляемости к инфекционным заболеваниям.

Белок в организме человека образуется беспрерывно из аминокислот, поступающих в клетки в результате переваривания белка пищи. Для синтеза белка человека необходим белок пищи в определенном количестве и оп­ределенного аминокислотного состава. В настоящее вре­мя известно более 80 аминокислот, из которых 22 наи­более распространены в пищевых продуктах. Аминокис­лоты по биологической ценности делят на незаменимые и заменимые.

Незаменимы восемь аминокислот - лизин, триптофан, метионин, лейцин, изолейцин, валин, треонин, фенилаланин; для детей нужен также гистидин. Эти аминокислоты в организме не синтезируются и должны обязательно поступать с пищей в определенном соотношении, т. е. сбалансированными. Особенно ценны незаменимые ами­нокислоты триптофан, лизин, метионин, содержащиеся в основном в продуктах животного происхождения, соот­ношение которых в пищевом рационе должно составлять 1:3:3.

Заменимые аминокислоты (аргинин, цистин, тирозин, аланин, серин и др.) могут синтезироваться в организме человека.

Пищевая ценность белка зависит от содержания и сбалансированности незаменимых аминокислот. Чем больше в нем незаменимых аминокислот, тем он ценней. Источниками полноценного белка являются мясо, рыба, молочные продукты, яйца, бобовые (особенно соя), ов­сяная и рисовая крупы.

Суточная норма потребления белка 1,2-1,6 г на 1 кг массы человека, т. е всего 57-118 г в зависимости от пола, возраста и характера труда человека. Белки живот­ного происхождения должны составлять 55 % суточной нормы. Кроме того, при составлении рациона питания следует учитывать сбалансированность аминокислотного состава пищи. Наиболее благоприятный аминокислотный состав представлен в сочетании таких продуктов, как хлеб и каша с молоком, пирожки с мясом, пельмени.


1 Обмен белков

Биологическое значение и специфичность белков. Белки являются основным веществом, из которого построена протоплазма клеток и меж­клеточные вещества. Жизнь - есть форма существования белковых тел (Ф. Энгельс). Без белков нет и не может быть жизни. Все ферменты, без которых не могут протекать обменные процессы, являются белковыми телами. С белковыми телами - миозином и актином - связаны явления мышечного сокращения. Переносчиками кислорода в крови являются пигменты белковой природы, у высших животных - гемоглобин, а у низших - хлорокруорин и гемоцианин. Белку плазмы, фибриногену, кровь обязана своей способностью к свертыванию. С некоторыми белко­выми веществами плазмы, так называемыми антителами, связаны иммун­ные свойства организма. Одно из белковых веществ сетчатки - зритель­ный пурпур, или родопсин - повышает чувствительность сетчатки глаза к восприятию света. Нуклеопротеиды ядерные и цитоплазматические принимают существенное участие в процессах роста и размножения. С участием белковых тел связаны явления возбуждения и его распростра­нения. Среди гормонов, участвующих в регуляции физиологических функций, имеется ряд веществ белковой природы.

Строение белков отличается большой сложностью. При гидролизе кислотами, щелочами и протеолитическими ферментами белок расщеп­ляется до аминокислот, общее число которых более двадцати пяти. Помимо аминокислот, в состав различных белков входят и многие другие компоненты (фосфорная кислота, углеводные группы, липоидные группы, специальные группировки).

Белки отличаются высокой специфичностью. В каждом организме и в каждой ткани имеются белки, отличные от белков, входящих в состав других организмов и других тканей. Высокая специфичность белков может быть выявлена при помощи следующей биологической пробы. Если ввести в кровь животного белок другого животного или раститель­ный белок, то организм отвечает на это общей реакцией, заключающейся в изменении деятельности ряда органов и в повышении температуры. При этом в организме образуются специальные защитные ферменты, спо­собные расщеплять введенный в него чужеродный белок.

Парэнтеральное (т. е. минуя пищеварительный тракт) вве­дение чужеродного белка делает животное через некоторый промежуток времени чрезвычайно чувствительным к повторному введению этого белка. Так, если морской свинке парэнтерально ввести небольшое количество (1 мг и даже меньше) чужеродного белка (сывороточные белки других живот­ных, яичные белки и т. д.), то через 10-12 дней (инкубационный период) повторное введение нескольких миллиграммов этого же самого белка вызывает бурную реакцию организма морской свинки. Реакция про­является в судорогах, рвоте, кишечных кровоизлияниях, понижении кро­вяного давления, расстройстве дыхания, параличах. В результате этих расстройств животное может погибнуть. Такая повышенная чувствитель­ность к чужеродному белку получила название анафилаксии (Ш. Рише, 1902), а описанная выше реакция организма - анафилак­тического шока. Значительно большая доза чужеродного белка, вводимая первый раз или до истечения инкубационного срока, не вызы­вает анафилактического шока. Повышение чувствительности организма к тому или иному воздействию называется сенсибилизацией. Сенсибилизация организма, вызванная парентеральным введением чуже­родного белка, сохраняется в течение многих месяцев и даже лет. Она может быть устранена, если ввести этот же белок повторно до истечения срока инкубационного периода.

Явление анафилаксии наблюдается и у людей в форме так называемой «сывороточной болезни» при повторном введении лечебных сывороток.

Высокая специфичность белков понятна, если учесть, что путем различного комбинирования аминокислот возможно образование бес­численного количества белков с различным сочетанием аминокислот. Расщепление белков в кишечнике обеспечивает не только возможность их всасывания, но и снабжение организма продуктами для синтеза своих собственных специфических белков.

Обмен белков - это совокупность пластических и энергетиче­ских процессов превращения белков в организме, включая обмен амино­кислот и продуктов их распада. Белки составляют основу всех клеточных структур и являются материальными носителями жизни. Биосинтез белков определяет рост, развитие и самообновление всех структурных элементов в организме и тем самым их функциональную надежность. Суточная по­требность в белках (белковый оптимум) для взрослого человека в среднем составляет 100-120 г (при трате энергии 3000 ккал/сутки). В распоряжении организма должны быть все аминокислоты (20) в определенном соотно­шении и количестве, иначе белок не может быть синтезирован. Многие составляющие белок аминокислоты (8 - валин, лейцин, изолейцин, лизин, метионин, треонин, фенилаланин, триптофан) не могут синтезироваться в организме и должны поступать с пищей. Это так называемые незаменимые аминокислоты. Другие аминокислоты, которые могут быть синтезированы в организме, называются заменимыми (их 12: гликокол, аланин, глутаминовая кислота, пролин, оксипролин, серии, тирозин, цистеин, аргинин, гистидин и др.). Исходя из этого, белки делят на биологически полноцен­ные (с полным набором всех восьми незаменимых аминокислот) и непол­ноценные (при отсутствии одной или нескольких незаменимых аминокис­лот).

Основными этапами обмена белков являются:

1) ферментативное расщепление белков пищи до аминокислот и вса­сывание последних;

2) превращение аминокислот;

3) биосинтез белков;

4) расщепление белков;

5) образование конечных продуктов распада аминокислот.

Всосавшись в кровеносные капилляры ворсинок слизистой оболочки

тонкого кишечника, аминокислоты по воротной вене поступают в печень, где они либо немедленно используются, либо задерживаются в качестве небольшого резерва. Часть аминокислот остается в крови и попадает в другие клетки тела, где они включаются в состав новых белков. Период обновления общего белка в организме составляет у человека 80 дней. Если пища содержит больше аминокислот, чем это не­обходимо для синтеза клеточных белков, ферменты печени отщепляют от них аминогруппы NH 2 , т.е. производят дезаминирование. Другие ферменты, соединяя отщепленные аминогруппы с СО 2 , образуют из них мочеви­ну, которая переносится с кровью в почки и выделяется с мочой. Углерод­ные цепи некоторых аминокислот, называемых «глюкогенными», могут превращаться в глюкозу или гликоген; углеродные цепи других аминокис­лот - "кетогенных" дают кетоновые тела. Белки как таковые практически не откладываются в депо. Поэтому белки, которые организм расходует после истощения запаса углеводов и жиров, - это не резервные белки, а ферменты и структурные белки самих клеток.


Нарушения обмена белков в организме могут быть количественные и качественные. О количественных изменениях белкового обмена судят по азотистому балансу , т.е. по соотношению количества азота, поступивше­го в организм с пищей и выделенного из него. В норме у взрослого чело­века при адекватном питании, как правило, количество введенного в орга­низм азота равно количеству азота, выведенного из организма (азотистое равновесие). В случаях, когда поступление азота превышает его выделе­ние, говорят о положительном азотистом балансе. При этом происходит задержка азота в организме. Наблюдается в период роста организма, во время беременности, при выздоровлении после тяжелых заболеваний. Ко­гда количество выведенного из организма азота превышает количество поступившего азота, говорят об отрицательном азотистом балансе. Он от­мечается при значительном снижении содержания белка в пище (белковом голодании).

Качественные изменения белкового обмена приводят к изменениям в структуре клеток и тканей - белковым дистрофиям - диспротеинозам. Одни из них проявляются в изменениях белка в клетках - паренхиматоз­ные (клеточные) дистрофии, другие - в изменениях внеклеточного белка тканей - мезенхимальные (внеклеточные) дистрофии.