Домой / Отопление / Липопротеины таблица. Что такое липопротеины? Анализы и диагностика

Липопротеины таблица. Что такое липопротеины? Анализы и диагностика

Строение липопротеинов представлено на рисунке 3.

Рисунок 1

Все липопротеины имеют сходное строение: ядро состоит из гидрофобных молекул: ТАГ, эфиров холестерина, а на поверхности находится монослой фосфолипидов, полярные группы которых обращены к воде, а гидрофобные погружены гидрофобное ядро липопротеина. Кроме фосфолипидов, на поверхности находятся белки-апопротеины.

Компоненты ядра связаны слабыми типами связей и находятся в состоянии постоянной диффузии – способны перемещаться друг относительно друга.

Основная роль липопротеинов – транспорт липидов, поэтому обнаружить их можно в биологических жидкостях.

При изучении липидов плазмы крови оказалось, что их можно разделить на группы, так как они отличаются друг от друга по соотношению компонентов. У разных липопротеинов наблюдается различное соотношение липидов и белка в составе частицы, поэтому различна и плотность.

Липопротеины разделяют по плотности методом ультрацентрифугирования, при этом они не осаждаются, а всплывают (флотируют). Мерой всплывания является константа флотации, обозначаемая S f (сведберг флотации). В соответствии с этим показателем различают следующие группы липопротеинов:

Липопротеины можно разделить и методом электрофореза. При классическом щелочном электрофорезе разные липопротеины ведут себя по-разному. При помещении липопротеинов в электрическое поле хиломикроны остаются на старте. ЛОНП и ЛПП можно обнаружить во фракции преb-глобулинов, ЛНП - во фракции b-глобулинов, а ЛВП - a-глобулинов:

Липопротеины разделяются соответственно их плотности на четыре основных типа: хиломикроны - ХМ, липопротеины очень низкой плотности - ЛОНП, липопротеины низкой плотности - ЛНП, липопротеины высокой плотности - ЛВП. Существуют также промежуточные формы в метаболизме липопротеинов: хиломикроны остаточные (ХМост), ЛОНП остаточные (или липопротеины средней плотности - ЛСП).

Определение липопротеинового спектра плазмы крови применяется в медицине для диагностики атеросклероза. Все эти липопротеины отличаются по своей функции.

1. Хиломикроны (ХМ) - образуются в клетках кишечника, их функция: перенос экзогенного жира из кишечника в ткани (в основном - в жировую ткань), а также - транспорт экзогенного холестерина из кишечника в печень.

2. Липопротеины Очень Низкой Плотности (ЛОНП) - образуются в печени, их роль: транспорт эндогенного жира, синтезированного в печени из углеводов, в жировую ткань.

3. Липопротеины Низкой Плотности (ЛНП) - образуются в кровеносном русле из ЛОНП через стадию образования Липопротеинов Промежуточной Плотности (ЛПП). Их роль: транспорт эндогенного холестерина в ткани.

4. Липопротеины Высокой Плотности (ЛВП) - образуются в печени, основная роль - транспорт холестерина из тканей в печень, то есть удаление холестерина из тканей, а дальше холестерин выводится с желчью.

Транспорт липопротеинов представлен на рисунке 2.

Аполипопротеины - это белковая часть липопротеинов (апобелок). В состав липопротеина может входить один или несколько апобелков. Некоторые апобелки являются интегральной частью липопротеина, а другие могут перемещаться с одного липопротеина на другой. Апобелки обозначают буквами: А, В, С, Е.

Интегральные апопротеины синтезируются в процессе формирования структуры липопротеина, как, например, белок В-48 в клетках эпителия ки­шечника. Периферические белки в плазме крови могут передаваться от одного типа липопротеинов к другим, определяя дальнейшие превращения ли­попротеинов.

Например, апопротеин C-II обеспе­чивает действие фермента липопротеинлипазы и та­ким образом утилизацию жиров периферическими тканями и превращение хиломикронов в остаточные хиломикроны. Остаточные хиломикроны содержат апопротеин Е, который взаимодействует с рецепто­рами гепатоцитов, и таким образом остаточные хи­ломикроны из крови попадают в печень.

Экстракция липидов плазмы крови соответствующим растворителем и последующее фракционирование полученного экстракта показали, что в плазме крови содержатся триацилглицеролы, фосфолипиды, холестерол и эфиры холестерола, а также небольшое количество неэстерифицированных длинноцепочечных жирных кислот (свободных жирных кислот), которые составляют менее 5% от общего количества жирных кислот, находящихся в плазме. Свободные жирные кислоты (СЖК) являются метаболически наиболее активными Липидами плазмы. Основные классы липидов, обнаруженные в плазме крови, приведены в табл. 26.1.

Чистый жир имеет меньшую плотность, чем вода, следовательно, чем выше соотношение липида и белка в липопротеинах, тем ниже их плотность (табл. 26.2). Это обстоятельство лежит в основе разделения липопротеинов плазмы крови методом ультрацентрифугирования. Скорость всплывания каждого липопротеина в растворе NaCl (удельный вес 1,063) может быть выражена в единицах флотации Сведберга Одна единица равна см/с на 1 дин/г при 26° С. В табл. 26.2 приведен состав различных фракций липопротеинов, полученных в результате центрифугирования плазмы. Различные классы липидов присутствуют в большинстве фракций. Поскольку фракции представляют собой физиологические компоненты плазмы, то общий химический анализ

Таблица 26.1. Липиды плазмы крови человека (см. скан)

(см. скан)

Рис. 26.1. Разделение липопротеинов плазмы крови методом электрофореза.

Таблица 26.2. Состав липопротеинов плазмы крови человека (см. скан)

последней на содержание различных липидов (за исключением СЖК) дает незначительную информацию.

Наряду с методами, основанными на различной плотности, липопротеины можно разделить также методом электрофореза (рис. 26.1) и более точно идентифицировать методом иммуноэлектрофореза. Помимо СЖК выделено 4 главные группы липопротеинов, важных в физиологическом отношении и при постановке клинического диагноза: 1) хиломикроны, образующиеся в кишечнике при всасывании триацилглицерола; 2) липопротеины очень низкой плотности (ЛПОНП или пре-Р-липопротеины), которые образуются в печени и используются для экспорта триацилглицерола; 3) липопротеины низкой плотности (ЛПНП или (-липопротеины), представляющие собой конечную стадию катаболизма ЛПОНП; 4) липопротеины высокой плотности (ЛПВП или а-липопротеины), участвующие в метаболизме ЛПОНП и хиломикронов, а также холестерола. Основным липидом хиломикронов и ЛПОНП является триацилглицерол, в то время как преобладающими липидами ЛПНП и ЛПВП являются соответственно холестерол и фосфолипиды (табл. 26.2).

Структура

Белковая часть липопротеинов называется аполипопротенном или апобелком, в некоторых ЛПВП на ее долю приходится около 60%, а в хиломикронах - всего 1%.

Типичный липопротеин, например хиломикрон или ЛПОНП, состоит из липидного ядра (образованного в основном неполярными трнацнлглнцеролами и эфирами холестерола) и наружного слоя, состоящего из более полярных фосфолипидов, холестерола и апобелков. Некоторые апобелки являются интегральной частью липопротеина и постоянно входят в его состав, в то время как другие могут переноситься на другие липопротеины (рис. 26.2).

Аполипопротеины (апобелки)

В состав липопротеинов входят один или несколько белков или полипептидов, которые называют апобелками. Эти белки обозначают буквами латинского алфавита (ABC). Так, два главных апобелка ЛПВП обозначаются А-I и A-II. Основным апобелком ЛПНП является апобелок В, он является также

Рис. 26.2. Схема строения липопротеина плазмы крови. Следует отметить сходство со структурой плазматической мембраны. Получены данные, согласно которым некоторое количество триацилглицеролов и эфиров холестерола содержится в поверхностном слое, а во внутренней области имеется свободный холестерол.

Таблица 26.3. Апобелки липопротеинов плазмы человека

компонентом ЛПОНП и хиломикронов. Однако апобелок В хиломикронов (В-48) меньше, чем апобелок В в ЛПНП или ЛПОНП (В-100), и имеет другой аминокислотный состав. В-48 синтезируется в кишечнике, а В-100 - в печени. (У крыс в печени, по-видимому, образуется как В-100, так и В-48.) Апобелки С-I, С-II, С-III представляют собой небольшие полипептиды, которые могут свободно переходить от одного липопротеина к другому (табл. 26.3). В состав углеводов, на долю которых приходится примерно 5% апобелка В, входят манноза, галактоза, фукоза, глюкоза, глюкозамин и сиаловая кислота. Таким образом, некоторые липопротеины являются также гликопротеинами. С-II является важным активатором внепеченочной липопротеинлипазы и участвует в освобождении кровотока от триацилглицеролов. А-I в ЛПВП является активатором лецитин холестерол-ацилтрансферазы плазмы крови, благодаря действию которой происходит в основном образование эфиров холестерола у человека.

Помимо апобелков А, В и С в липопротеинах плазмы крови было идентифицировано еще несколько апобелков. Одним из них является выделенный из ЛПОНП апобелок Е (10% от общего количества аминокислот в нем составляет аргинин), на долю которого в норме приходится 5-10% от общего количества апобелков ЛПОНП. Содержание апобелка Е в широкой фракции Р-ЛПОНП при электрофорезе возрастает у больных гиперлипопротеинемией типа III.


Взаимосвязь между атеросклерозом, а также ишемической бо­лезнью сердца и нарушениями свойств липидов плазмы стиму­лировала многие исследования в этой области. Современные пред­ставления о физиологии и патологии липидов плазмы основаны на концепции о липопротеинах, в виде которых липиды нахо­дятся в циркулирующей крови. В первой части этой главы мы останавливаемся на современной терминологии и классификациях липидов и липопротеинов плазмь!.

ТЕРМИНОЛОГИЯ И КЛАССИФИКАЦИЯ

Липиды плазмы

На рис. 29 представлены химические формулы четырех типов липидов, имеющихся в плазме.

Жирные кислоты представляют собой соединения, молекулы которых содержат углеводородные цепи различной длины. Они могут быть насыщенными (не содержащими двойных связей) или ненасыщенными (с двумя и более двойными связями). В плазме из числа насыщенных жирных кислот преобладают пальмитино­вая (16 углеродных атомов) и стеариновая (18 углеродных ато­мов). Жирные кислоты могут подвергаться этерификации глице­рином с образованием глицеридов, или оставаться свободными, В последнем случае их называют свободными жирными кислота­ми (СЖК) или неэтерифицированными жирными кислотами (НЭЖК). В крови СЖК преимущественно находятся в связанной с альбумином форме. Свободные жирные кислоты, представляя собой легко доступный источник энергии, в значительной степе­ни удовлетворяют энергетические потребности организма. Более подробное обсуждение этих вопросов метаболизма жиров пред­ставлено на стр. 206-208.

Триглицериды состоят из глицерина, каждая молекула которо­го этерифицирована тремя жирными кислотами.

Фосфолипиды являются сложными липидами, напоминающими Триглицериды, но содержащими остаток фосфата и азотистое ос­нование. Основные фосфолипиды в плазме - лецитин (фосфатидилхолин) и сфингомиелин. Фосфаты и азотистые основания рас­творимы в воде - факт, важный в транспорте липидов.

Холестерин имеет стероидную структуру, производными кото­рой являются другие стероиды. Приблизительно 2 имеющегося в плазме крови холестерина этерифицированы жирными кисло­тами с образованием эфиров холестерина. Рутинные методы ис­следования позволяют определить общее содержание холестери­на, но не дают возможности измерить отдельно концентрации неэтерифицированных и этерифипированных форм.

Липиды относительно нерастворимы в воде, но в биологиче­ских жидкостях они транспортируются в виде растворимых бел­ковых комплексов, известных как липопротеины: водораствори­мые (полярные) группы белков, фосфолипидов и свободного холе­стерина окружают ядро, состоящее из нерастворимых (неполяр­ных) сложных эфиров холестерина и триглицеридов. Различают 5 групп белков, называемых апопротеинами А, В, С, D и Е. Такие подгруппы, как А1 или С1, специфические функции которых известны, будут упоминаться по мере необходимости.

Липопротеины различаются между собой по размеру и составу. В организме в значительной степени осуществляются процессы взаимопревращения и взаимообмена как липидных, так и белко­вых компонентов липопротеинов. Их можно классифицировать в зависимости от плотности, измеряемой методом ультрацентрифу­гирования, на 4 основных класса (рис. 30).

Для транспорта холестерина наиболее важное значение имеют два класса липопротеинов: липопротеины высокой плотности (ЛПВП), транспортирующие холестерин из клеток, и липопроте­ины низкой плотности (ЛПНП), транспортирующие холестерин в клетки.

Для транспорта триглицеридов наиболее важное значение имеют липопротеины очень низкой плотности (ЛПОНП), транс­портирующие эндогенные триглицериды от печени к клеткам, и хнломикроны, транспортирующие экзогенные (алимептарные) триглицериды от кишечника.

Пятый класс липопротеипов, отсутствующий в плазме крови здорового человека, составляют липопротеины промежуточной плотности (ЛППП). Обычно они представляют собой транзиторные промежуточные продукты превращения ЛПОНП в ЛПНП, содержащие как холестерин, так и эндогенные триглицериды.

Плазма крови, взятой натощак у здорового человека, содержит только ЛПВП, ЛПНП и ЛПОНП. У здорового человека имеется параллелизм между величиной содержания холестерина в плаз­ме крови и величинами, характеризующими количество холесте­рина, включенного в ЛПНП. Аналогичный параллелизм имеется между содержанием триглицеридов в плазме крови и в ЛПОНП. Эти заключения справедливы также для большинства случаев гиперлипидемии. В редких случаях может возникать необходи­мость в характеристике липопротеинов с помощью одного или не­скольких из следующих методов.

Ультрацентрифугирование представляет собой метод, позво­ляющий получать однозначные результаты путем разделения ли­попротеинов в зависимости от их плотности. При ультрацентри­фугировании происходит седиментация ЛПВП вместе с другими белками плазмы. Липопротеины низкой плотности обнаруживают тенденцию к флотации. Скорость флотации выражают в едини­цах Sf (флотация по Сведбергу). Чем выше соотношение липид: белок, тем ниже плотность липопротеина и тем выше чис­ло Sf.

Электрофорез позволяет разделять липопротеины в зависимо­сти от величины электрического заряда их апопротеинов. Этот метод более доступен, чем ультрацентрифугирование. Хотя в дан­ной главе мы не пользуемся электрофоретической номенклатурой, она отражена в названиях ряда патологических состояний, кото­рые будут рассмотрены ниже. Путем электрофореза липопротеи­ны удается разделить на альфа (ЛПВП), бета (ЛПНП), пребета (ЛПОНП) и хиломикроновую фракции. В присутствии избытка ЛППП полоса, соответствующая бетафракции, может расши­ряться.

Простая методика преципитации позволяет отделить ЛПВП от других липопротеинов, после чего можно дифференцировать холестерин, связанный с ЛПВП и с ЛПНП.

На рис. 30 представлены номенклатура и состав основных классов липопротеидов.

Метаболизм липопротеидов

Липиды плазмы имеют своим источником пищу (экзогенные) или синтезируются в организме (эндогенные).

Метаболизм экзогенных (пищевых) липидов (рис. 31). Жир­ные кислоты и глицерин, высвобождаемые при переваривании пищевых жиров, всасываются в клетки слизистой оболочки ки­шечника, где они вновь этерифицируются, образуя триглицериды и эфиры холестерина. Последние в сочетании с фосфолипидами и апопротеинами В (необходимыми для транспорта из клетки) и А секретируются в виде хиломикронов в систему лимфообраще­ния и через грудной проток поступают в кровяное русло. В лим­фе и крови апопротеины С и Е, происходящие из ЛПВП, присо­единяются к хиломикронам. Благодаря своим большим размерам (30-600 нм) хиломикроны обладают свойством светорассеивания, которое лежит в основе помутнения плазмы крови, обнару­живаемого иногда после приема жирной пищи (послеобеденная липемия).

Большая часть хиломикронов метаболизируется в жировой и мышечной тканях. Апопротеин С2 активирует локализованный в стенках кровеносных капилляров фермент липопротеидлипазу, катализирующий гидролиз триглицеридов в хиломикронах до гли­церина и жирных кислот. Эти жирные кислоты либо поступают в клетки жировой или мышечной тканей, либо связываются с альбумином плазмы, тогда как глицерин в печени включается в процесс гликолиза. По мере уменьшения размеров хиломикрона апопротеин А его поверхности, а также некоторая доля апопротеина С и фосфолипидов вновь включаются в состав ЛПВП. Бо­лее мелкие остаточные частицы свойством светорассеивания не обладают и помутнение плазмы крови исчезает. Эти короткоживущие частицы состоят преимущественно из холестерина и апо­протеинов В, С, а также Е. Они связываются со специфическими печеночными рецепторами и поступают в гепатоциты, где проис­ходит распад белка и высвобождение холестерина в клетки.

В результате этого процесса триглицериды доставляются в жировую ткань и в мышцы, а холестерин - в печень.

Метаболизм эндогенных липидов (рис. 32). Триглицерпды син­тезируются в печени из СЖК, поступающих из жировой ткани. При высоком уровне углеводов в рационе возможен непосредст­венный синтез СЖК из избытка глюкозы. Эти триглицериды, а также холестерин, синтезируемый в печени или поступающий из остатков хиломикронов, соединяются с апопротеинами В и С и образуют ЛПОНП. После секреции в кровь эти ЛПОНП, присо­единяя еще большее количество апопротеина С, образуют ЛПВП. Последние активируют липопротеидлипазу на стенках капилля­ров, и триглицериды, подобно экзогенным триглицеридам хиломикронос, подвергаются гидролизу п удалению из плазмы крови, в которой остаются ЛППП. Некоторая доля ЛППП взаимодей­ствует с рецепторами печени, тогда как остальные превращаются в ЛПНП, состоящие почти целиком из холестерина и апопротеи­на В. Механизм и локализация этого процесса превращения не­известны.

Последующий метаболизм ЛПНП изучен очень частично, но ему придают важное значение в развитии атероматоза. По-видимому, существуют 2 пути удаления ЛПНП из плазмы. Согласно первому, ЛПНП после связывания со специфическими рецепто­рами, имеющимися на поверхности мембран большинства клеток, захватываются клетками и высвобождают холестерин, который может быть включен в состав биомембран. Этот холестерин, уг­нетая по механизму обратной связи начальные этапы процесса биосинтеза холестерина в клетках, а также ингибируя биосинтез рецепторов ЛПНП на поверхности клеток, регулирует внутрикле­точный уровень холестерина. По-видимому, в периферические клетки необходимый холестерин поступает преимущественно из печени. Часть ЛПНП, особенно если их концентрация в плазме высока, может также проникать в некоторые клетки в результа­те нерегулируемого пассивного процесса. Некоторое количество ЛПНП могут захватывать гепатоциты, но механизм и количест­венная характеристика этого процесса неизвестны.

Таким образом, в результате осуществления этого процесса эндогенные триглицериды доставляются в периферические клет­ки для обеспечения потребностей последних в энергии, а эндо­генный холестерин - для биосинтеза мембран.

Регуляция содержания холестерина в плазме и в клетках; роль ЛПНП и ЛПВП

Холестерин поступает в кровь и в клетки, всасываясь из пи­щи, а также синтезируется в организме. При обычной диете ко­личество всасывающегося холестерина почти пропорционально его содержанию в продуктах питания. В экономически развитых странах холестерин пищи содержится преимущественно в яичном желтке (наиболее богатый источник), молочных и мясных про­дуктах. За сутки в организм поступает с продуктами питания приблизительно от 1,5 до 2 ммоль (от 600 до 800 мг) холестерина.

Эндогенный холестерин синтезируется преимущественно в пе­чени, причем скорость этого процесса снижается, когда в печень поступает экзогенный холестерин. Синтез холестерина в перифе­рических тканях регулируется захватом ЛПНП.

Холестерин плазмы крови и ЛПНП. У здорового человека при увеличении общего содержания холестерина в организме нара­стает экскреция холестерина с желчью. Холестерин экскретиру«тся либо после его превращения в печени до желчных кислот и их солей, либо в виде свободного холестерина. Как свободный холестерин, так и желчные кислоты и их соли могут подвергать­ся обратному всасыванию в подвздошной кнщко (кпшсчпопеченочная циркуляция). Лекарственные средства, которые благодаря свойству связывать соли желчных кислот в содержимом кишеч­ника препятствуют их реабсорбции, могут быть использованы для снижения концентрации холестерина и ЛПНП в плазме.

При поступлении в организм с пищей очень большого коли­чества холестерина угнетение биосинтеза холестерина в печени может быть недостаточным для предотвращения повышения его концентрации в плазме. Более того, насыщенные жирные кис­лоты, которые, подобно холестерину, поступают преимуществен­но из пищевых жиров животного происхождения, по-видимому, способствуют увеличению ЛПНП и, следовательно, содержанию холестерина в плазме, тогда как полиненасыщенные жирные кис­лоты (источником которых являются главным образом расти­тельные жиры) могут способствовать уменьшению их содержания. Причина этого явления неизвестна.

Холестерин в клетках, ЛПВП и ЛХАТ. Захват ЛПНП и мест­ный синтез или высвобождение при распаде клеточных мембран могут вызвать накопление холестерина в периферических клет­ках. Этот избыток холестерина может быть перенесен в печень (с последующей экскрецией в желчь) только после включения в ЛПВП.

ЛПВП синтезируются в клетках печени и кишечника, которые секретируют их в виде небольших комплексов с фосфолипидами, окруженными апопротеинами А и Е. Свободный холестерин, по­ступающий из биомембран периферических клеток или из дру­гих липопротеидов, поглощается ЛПВП и этерифицируется. Этерификацию катализирует фермент лецитинхолестеролацилтрансфераза (ЛХАТ). Для процесса этерификации требуется также апопротеин А1. Основное количество этерифицированного холе­стерина переносится на ЛПНП, ЛПОНП и остаточные частицы и таким образом достигает печени. Небольшая доля этерифициро­ванного холестерина резервируется в ядре ЛПВП.

Мы уже упоминали о том, что при голодании ЛПВП транс­портируют основное количество апопротеина С плазмы крови. По

мере повышения уровня ЛПОНП или хиломикронов эти частицы захватывают апопротеин G2, который активирует липопротеидлипазу. После завершения гидролиза триглицеридов указанный апонротеин вновь присоединяется к ЛПВП.

Апопротеины

Путь метаболизма липопротеидов, как мы видели, определя­ется характером транспортируемых ими апопротеинов. Эти белки не только придают липидам водорастворимость, но и необходимы для секреции липопротеидов клетками печени и кишечника и в процессах взаимодействия липопротеидов с рецепторами на по­верхности клеток. Они также в табл. 20 активируют ферменты, участвующие в метаболизме липопротеидов, обобщены функции главных типов апопротеидов. Более подробные сведения по это­му вопросу можно найти в работах, ссылки на которые имеются в конце этой главы.

Диапазон нормальных колебаний содержания холестерина в плазме

У новорожденного содержание холестерина в плазме (крови из пупочного канатика) обычно не превышает 2,6 ммоль/л (100 мг/дл). Со временем, особенно в течение первого года жиз­ни, содержание холестерина в плазме крови постепенно нара­стает, но в детстве обычно не превышает 4,1 ммоль/л (160 мл/дл). У наиболее обеспеченной материально части населения дальней­шее нарастание уровня холестерина в плазме происходит после второго десятилетия жизни. Это нарастание более значительно у мужчин, чем у женщин, на протяжении всего репродуктивного возраста. На 5м и 6м десятилетии жизни во многих популяциях наиболее распространенная (95%) верхняя граница нормы дости­гает 8,4 ммоль/л (330 мг/дл). Такое нарастание концентрации холестерина в плазме не отмечается среди представителей менее обеспеченных слоев населения, среди которых заболеваемость ишемической болезнью сердца значительно ниже.

НАРУШЕНИЯ МЕТАБОЛИЗМА ЛИПИДОВ

Наиболее распространенные нарушения метаболизма липидов связаны с гиперлипидемией. Очень редко встречаются врожден­ные аномалии, при которых возможно накопление липидов в тка­нях, но не в крови.

Как правило, гиперлипидемия обусловлена поступлением в организм избытка высококалорийных продуктов, особенно алко­голя. Возможна вторичная гиперлипидемия, развивающаяся на фоне другого заболевания, приводящего к нарушениям метаболизма липидов. Более редко встречается гиперлипидемия вслед­ствие первичного (наследственного) дефекта, степень выраженно­сти которого могут усугубить алиментарные факторы.

Клинические проявления нарушений метаболизма липидов

Результатом тяжелой и длительной гиперлипидемии обычно (но не всегда) является накопление в тканях липидов, вызываю­щее повреждение клеток. Накопление липидов, например под ко­жей или слизистыми оболочками, может быть видимым.

Липиды могут накапливаться в стенках артерий. Этот процесс является наиболее распространенным и важным проявлением парушения метаболизма липидов. Накопление холестерина и сопро­вождающие его клеточная пролиферация и образование фиброз­ной ткани приводят к возникновению атероматозных бляшек. Атеросклероз обусловлен патологическими изменениями и заку­поркой артерий, что может быть результатом кальцификации и изъязвления этих бляшек.

Накопление липидов в подкожной клетчатке вызывает ксантоматоз, клиническая картина которого, по-видимому, обычно определяется природой липидных фракций, преимущественно во­влекаемых в патологический процесс.

При сопровождающемся сыпью ксантоматозе на коже появ­ляются небольшие желтые зудящие узелки. В этих случаях в плазме крови резко повышено содержание ЛПОНП или хиломик­ронов (триглицеридов). Если концентрация липидов в плазме снижается до нормальных величин, то сыпь быстро исчезает.

Для бугорчатого ксантоматоза характерны желтые бляшки, обнаруживаемые преимущественно на локтях и коленях. Эти бляшки могут быть большими и обезображивающими. Такие про­явления, а также имеющие вид выпуклых полосок отложения липидов в кожных складках на ладонях сопровождаются повы­шением содержания в плазме ЛППП (в состав которых входят как триглицериды, так и холестерин).

Термином ксантепазма обозначают отложения липидов под кожей лица вокруг глаз, что может быть связано с высокими уровнями холестерина в ЛПНП плазмы.

Отложение липидов в сухожилиях называют ксантоматозом сухожилий. При отложении липидов в роговой оболочке глаза возникает характерное дугообразное образование. У лиц относи­тельно молодого возраста (не старше 40 лет) при ксантоматозе сухожилий или дугообразных отложениях липидов в роговой обо­лочке глаза, как и в случаях ксантелазмы, особенно часто отме­чают высокие уровни холестерина в ЛПНП плазмы.

Гипертриглицеридемия, обусловленная повышением содержа­ния как хиломикронов, так и ЛПОНП (или сочетанием обоих факторов), вызывает помутнение плазмы. Длительные и очень высокие концентрации хиломикронов сочетаются с болями в об­ласти живота и даже панкреатитом, а также ксаатоматозом с сы­пью. Гипертриглицеридемия часто не сопровождается клиниче­скими проявлениями. По-видимому, имеющие высокую молеку­лярную массу липопротеиды не вызывают атеромы. Однако для многих пациентов с повышенным содержанием триглицеридов в ЛПОНП характерна пониженная концентрация ЛПВП (необхо­димых для транспорта холестерина из тканей), а в некоторых случаях - повышенные уровни ЛПНП или ЛППП (содержащих холестерин). Эти воздействия на метаболизм холестерина могут объяснить несколько повышенный риск развития атером, кото­рый связывают с гипертриглицеридемией.

Факторы, ассоциируемые с заболеваниями сердечнососудистой системы

Имеются убедительные доказательства существования прямой корреляции между содержанием ЛПНП и сердечнососудистыми заболеваниями. Еще более убедительны доказательства обратной корреляции между этими заболеваниями и содержанием ЛПВП. Чем выше концентрация ЛПВП в плазме, тем ниже степень рис­ка развития сердечнососудистых заболеваний. По-видимому, ЛПВП выполняют защитную функцию, что не представляется удивительным, поскольку ЛПВП принадлежит физиологическая роль переносчиков холестерина от периферических тканей в про­цессе его экскреции. Влияние ряда факторов, снижающих сте­пень риска развития сердечнососудистых заболеваний, связывают с высокими уровнями ЛПВП. Такие факторы могут быть гормо нальными (концентрация гормонов у женщин репродуктивного возраста выше, чем у мужчин); физические упражнения способ­ствуют повышению концентрации ЛПВП, тогда как питание, бо гатое углеводами, и курение способствуют ее снижению.

Вторичная гиперлипидемия

В большинстве случаев гиперлипидемия бывает вторичной, обусловленной либо алиментарными факторами, либо наличием заболеваний, при которых метаболизм липидов нарушен.

К числу таких патологических состояний относятся ожирение, злоупотреб­ление алкоголем, сахарный диабет, гипотиреоз и нефротический синдром. В табл. 21 перечислены основные причины вторичных гиперлипидемий.

Первичные аномалии метаболизма липидов

Полигенная гиперхолестеринемия

Для большинства семей с повышенной заболеваемостью гиперхолестеринемией характерно нормальное распределение величин содержания холестерина в плазме отдельных индивидуумов. При истинной моногенной наследственной гиперхолестеринемии для указанных величин характерно явное тримодальное распределе­ние, когда гомозиготным носителям нормального гена, гетерозиготам и гомозиготным носителям аномального гена соответствуют 3 отчетливо различаемых пика. Полагают, что нарушения син­теза и превращений ЛПНП или холестерина в семьях, для ко­торых характерно нормальное распределение с высокой средней величиной, обусловлены аномалиями нескольких генов. Поэтому применяют название полигенная гиперхолестеринемия. Алиментарные и связанные с воздействиями внешней среды факторы могут определять проявления этого полигенного дефекта. Относи­тельно редко встречаются ксантомы, но степень риска развития сердечнососудистых заболеваний повышена.

Поскольку аномалии, обнаруживаемые при первичных нару­шениях метаболизма липидов, можно использовать для иллюстра­ции этапов биохимических превращений, описанных в начале этой главы, мы рассмотрим их более подробно, чем они того за­служивают. Обсуждая результаты лабораторных исследований при каждом из этих патологических состояний, мы сопоставим их с нарушениями физиологических функций.

Хотя обычно такие заболевания являются наследственными, в анамнезе соответствующая информация может отсутствовать. Некоторые особенно редко встречающиеся патологические состоя­ния могут сопровождаться гипо, а не гиперлипемией. Вторичные факторы могут влиять на экспрессию генетических аномалий.

Дисфункции рецепторов

Недостаточность рецепторов для ЛПНП (наследственная гиперхолестеринемия) наследуется как аутосомнодоминантный при­знак. Поскольку поступление холестерина ЛПНП в клетки сни­жено, его содержание в плазме нарастает. Концентрация триглиперидов остается в пределах нормы или слегка повышается. Из наследственных нарушений метаболизма это патологическое со­стояние характеризуется особенно высокой смертностью. Повы­шенная концентрация холестерина может быть обнаружена в кро­ви из пупочного канатика.

У гомозигот рецепторы для ЛПНП фактически отсутствуют и содержание холестерина ЛПНП в плазме крови в 3 или 4 раза превышает величины, характерные для здоровых лиц. В связи с развитием сердечнососудистых заболеваний возраст таких паци­ентов редко превышает 20 лет. У гетерозиготных носителей ано­мального гена число рецепторов для ЛПНП снижено приблизи­тельно на 50% и содержание холестерина ЛПНП в плазме крови приблизительно в 2 раза выше, чем у здоровых людей. У этих больных степень риска развития сердечнососудистых заболева­ний повышена в 10-50 раз. У гомозигот ксантомы сухожилий и ксантелазмы развиваются в раннем детстве, но у гетерозиготных носителей - только после 20 лет.

В семьях с моногенным типом наследования имеется четкое различие между клинически здоровыми гомозиготными и гетерозиготными индивидуумами, в противоположность тому, что имеет место при более распространенном полигенном типе заболевания. В большинстве стран моногенная гиперхолестеринемия состав­ляет менее 5% всех случаев первичной гиперхолестеринемии.

Аномалии, связанные с апопротеинами

Недостаточность апопротеина С2 будет упомянута при обсуж­дении вопроса о дисфункциях липопротеидлипазы.

Апопротеин А - важный компонент ЛПВП и снижение его содержания приводит к недостаточности ЛПВП. Поскольку ЛПВП имеют важное значение для транспорта холестерина, при их недостаточности эфиры холестерина скапливаются в тканях, особенно в клетках ретикулоэндотелиальной системы. Для этого синдрома, известного под названием болезни Танжье (синдром Фредериксона), характерны увеличенные желтые миндалины, гепатомегалия, лимфаденопатия.

Недостаточность апопротеина В (абеталипопротеидемия; дефи­цит ЛПНП) приводит к нарушению синтеза хиломикронов и ЛПОНП (и, следовательно, ЛПНП). Поэтому липиды не могут транспортироваться от кишечника или печени. Среди клиниче­ских проявлений этого синдрома характерны стеаторея, прогрес­сирующая атакспя, пигментозный ретинит, акантоцитоз («колю­чие» эритроциты).

Продуцирование печенью избытка аиоиротеына В сопровож­дает наследственную сочетанную гаперлипидемию. Апопротеин В необходим для секреции хиломикронов и ЛПОНП, а также для связывания ЛПНП с рецепторами. Приблизительно у "/з пора­женных заболеванием членов семей, в которых встречается наследствоппая соястапиая.пшсрлиппдсмпя, повышено содержание ЛПОНП в плазме вследствие первичной или вторичной стимуля­ции биосинтеза триглицеридов. У другой трети пациентов нет стимуляции биосинтеза триглицеридов, а отмечается только повы­шенный уровень ЛПНП в плазме. Наконец, еще у одной трети пациентов повышено содержание обеих фракций. Эти нарушения обмена липидов становятся явными только поело 30 лет. Во всех случаях риск развития сердечнососудистых заболеваний выше, чем в норме. Высокое содержание триглицеридов может вызывать ксантоматоз, сопровождающийся сыпью.

Наличие функционально аномального апопротеина Е можно обнаружить у 1 % населения, но заболевание наследственная дисбеталипопротеидемия (болезнь «широкой бета») возникает только в тех случаях, когда имеется иная причина первичной или вторичной гиперлипидемии. При этом нарастает содержание ЛППП и клинически могут быть отмечены высокая частота заболева­ний кровеносных сосудов, бугорчатый ксантоматоз, отложения липидов в ладонных складках.

Дисфункции ферментов

Недостаточность липопротеидлипазы. Активность липопротеид­липазы может быть снижена в результате либо недостаточности самого фермента, либо нарушения активации фермента в связи с недостаточностью апопротеина С2.

Накопление хиломикронов приводит к очень значительному помутнению плазмы крови. Истинную недостаточность липопро­теидлипазы обычно обнаруживают в детстве по симптомам, ука­зывающим на накопление жиров в различных органах и тканях: в коже (сопровождающийся сыпью ксантоматоз); в печени (гепатомегалия); в кровеносных сосудах сетчатой оболочки глаза (ретинальная липемия); боли в области живота (симптом, сопро­вождающий гиперхиломикронемию).

Хиломикронемия, обусловленная недостаточностью апопротеи­на G2, чаще наблюдается у взрослых.

Недостаточность ЛХАТ. ЛХАТ необходима для этерификации свободного холестерина. Недостаточность ЛХАТ приводит к на­коплению свободного, преимущественно неэтерифицированного холестерина в тканях, следствием чего является преждевремен­ное развитие атеросклероза, помутнение роговой оболочки глаза, повреждение почек, анемия, которая может быть обусловлена на­рушением свойств клеточных мембран.

Продуцирование избытка триглицеридов

Наследственная эндогенная гипертриглицеридемия обуслов­лена продуцированием избытка триглицеридов в печени. Повы­шена секреция ЛПОНП из печени в плазму. Заболевание, по-видимому, исследуется лак аутосомнодоминантный признак и обыч­но становится явным только после 40 лет. Оно может прояв­ляться ожирением, непереносимостью глюкозы, гиперурикемией.

В сочетании с такими вторичными факторами, как сахарный диабет или алкоголизм, указанное заболевание может привести к очень существенному повышению содержания ЛПОНП в плаз­ме и часто, кроме того, к хиломикронемии.

ПРИНЦИПЫ ЛЕЧЕНИЯ

Принятие решения о необходимости лечения пациента с гиперлипидемией должно быть основано на результатах как кли­нических наблюдений, так и определений содержания липидов в плазме. Некоторые виды лечения связань! с определенным рис­ком, степень которого следует оценить в сопоставлении с возмож­ной пользой лечебных мероприятий.

Вторичные причины гиперлипидемии, в том числе ожирение и злоупотребление алкоголем, следует выявить и провести соот­ветствующее лечение.

Диета должна контролироваться вне зависимости от конкрет­ной причины гиперлипидемии. Диета рекомендуется в зависимо­сти от природы аномалии.

Гиперхолестеринемия

Гиперхолестеринемия повышает степень риска развития сер­дечнососудистых заболеваний. Поскольку липиды, осаждающие­ся в клетках стенок артериальных сосудов, проникают в них из плазмы (особенно из ЛПНП и ЛППП), было выдвинуто предпо­ложение о том, что повышение концентрации липидов в плазме приведет к нарастанию скорости их отложения на стенках сосу­дов. Представляется обоснованным и следующее предположение о том, что снижение концентрации липидов в плазме приведет к замедлению скорости развития атеросклероза (см. ссылки в кон­це главы). Степень риска, связанного с интенсивным лечением, необходимо оценить в сопоставлении с учетом возможной пользы лечебных мероприятий для больного. Во всяком случае необхо­димо понимать природу нарушения липидного обмена, чтобы обеспечить выбор национального способа лечения.

Ограничение количества потребляемых с пищей животных жи­ров, яиц и молочных продуктов снижает поступление в организм как холестерина, так и насыщенных жирных кислот. Следует по­высить потребление полиненасыщенных жиров. Эти мероприя­тия по контролю диеты не всегда бьгаают полностью успешными.

Секвестранты солей желчных кислот, такие как холестирамин и колестипол, представляют собой смолы, которые связывают об­разующиеся из холестерина соли желчных кислот, предотвращая таким образом их обратное всасывание и повторное использова­ние. При этом происходит кимцецсаторная стимуляция биосин­теза холестерина в печени, но содержание холестерина в плазме обычно понижается.

Никотиновая кислота может уменьшить секрецию ЛПОНП и, следовательно, образование ЛПНП, но может вызвать и неприят­ные добочныс эффекты, также как приливы крови к лицу. Ни­котиновую кислоту можно назначать в сочетании с секвестрантами солей желчных кислот. Она также может быть эффективна в тех случаях наследственной сочетанной гиперлипидемии, когда доказано повышение секреции ЛПОНП.

Гипертриглицеридемия

Для лечения гипертриглицеридемип могут оказаться вполне достаточными только определенные ограничения в питании.

Ограничение количества жиров в диете может быть эффектив­ной мерой для снижения уровня хиломикронов в плазме.

Ограничение количества углеводов в диете снижает эндоген­ный синтез триглицеридов и может быть использовано как лечеб­ное мероприятие в тех случаях, когда концентрация ЛПОНП в плазме повышена.

Клофибрат представляет собой лекарственное средство, которое может активировать липопротеидлипазу, повышая таким образом скорость удаления из плазмы крови ЛПОНП и хиломикронов. Клофибрат применяют для лечения наследственной дисбеталипопротеидемии, когда ограничения в питании оказываются неэф­фективными. По клиническим показаниям клофибрат может быть назначен при эндогенной гипертриглицеридемии, когда кон­центрация ЛПОНП повышена. У больных, принимающих клофиб­рат, относительно часто встречаются желчные камни; к числу других побочных эффектов относятся мышечные судороги и в редких случаях импотенция. Как всегда, риск, связанный с лече­нием, следует сопоставить с его возможной пользой для пациента.

ЗАКЛЮЧЕНИЕ

1. Липиды в плазме транспортируются в виде липопротеидов.

2. Липиды плазмы можно классифицировать в зависимости от их химического строения или как липопротеиды с помощью электрофореза или ультрацентрифугирования. Для понимания аномалий обмена липидов наиболее информативны данные, полу­чаемые при анализе липопротеидов.

3. Химически фракции липидов представляют собой холесте­рин, триглицериды, фосфолипиды и свободные жирные кислоты.

4. Основными липопротеидами являются липопротеиды высо­кой плотности (ЛПВП), низкой плотности (ЛПНП), очень низ­кой плотности (ЛПОНП) и хиломикроны.

5. Холестерин встречается преимущественно в ЛПВП и в ЛПНП, а триглицериды - в ЛПОНП и хиломикронах.

6. Гиперлипидемия может быть первичной или вторичной, т. е. обусловленной другим заболеванием. Только при первичной гиперлипидемии может возникать необходимость в более полной характеристике аномалий свойств липопротеидов для разработ­ки тактики лечения. Для дифференциальной диагностики сходных аномалий в свойствах липопротеидов необходимы систематические обследования членов семей больных, что лишь в редких случаях бывает осуществимо практически из-за организационных труд­ностей.

8. Лечение первичной гиперлипидемии основано прежде всего на контроле диеты. Лекарственные средства могут быть исполь­зованы дополнительно, если это необходимо. Лечение первичной гиперлнпидемии преимущественно является эмпирическим.

Исследования при подозрении на гиперлипидемию

Должна быть логическая последовательность в ходе обследования пац№ ента с предполагаемыми аномалиями липидов плазмы крови.

1. Имеется ли истинная гиперлицидемия?

Гиперлипидемия может быть диагностирована на основании свойствен. ного липемии внешнего вида плазмы крови или результатов определений содержания в ней холестерина и триглицеридов. Кровь для анализов обоих компонентов следует брать после того, как пациент голодал 14-16 ч, так кан концентрация триглицеридов (но не холестерина) значительно изменяется после приема содержащей жиры пищи.

Наиболее распространенной причиной получения явно липемичной плаз. мы при взятии крови у больных, находящихся в стационаре, бывают внутри­венные вливания жидкостей, содержащих липиды; поэтому в течение нескольких часов перед взятием крови для проведения какихлибо исследовал ний такого типа больным не следует внутривенно вводить жидкости, со, держащие липиды.

2. Является ли аномалия первичной или вторичной?

В большинстве случаев гиперлипидемии бывают вторичными и подда, ются коррекции путем контроля диеты или лечения заболевания, лежащего В основе аномалии обмена липидов.

В табл. 21 представлены основные причины вторичной гиперлипидемии. Во всех случаях гиперлипидемии следует рассмотреть возможность наличия сахарного диабета, гипотиреоза и нефротического синдрома. Злоупотребле­ние алкоголем - обычная причина вторичной гипертриглицеридемпп.

3. Какова природа аномалии?

Если не удается установить причину, которая могла бы вызвать вторич­ную гиперлипидемию, то наблюдаемую аномалию следует считать первич. ной. Выбор адекватного способа лечения в некоторых случаях зависит oi точности определения природы основного нарушения свойств липопротеидов. Визуальная оценка внешнего вида плазмы крови может дать ценные све­дения.

На основании результатов лабораторных исследований различают три основные группы аномалий:

а) Преимущественное нарастание холестерина ЛПНП при прозрачной плазме крови. Такое явление может быть при наследственной гиперхолестеринемии, полигенной гиперхолестеринемии, наследственной сочетанной ги перлппидемии.

б) Преимущественное нарастание триглицеридов при мутной (или да­же напоминающей по виду молоко) плазме крови, что обусловлено присут­ствием рассеивающих свет липопротеидов с высокой молекулярной массой. Такие явления могут быть при наследственных сочетанной гиперлипидемпи (ЛПОНП), эндогенной гипертриглицеридемии (ЛПОНП), гиперхиломикронемии.

Способы лечения этих патологических состояний различны; поэтому важ­но установить, обусловлено ли помутнение плазмы крови ЛПОНП или хпломикронами.

Образцы мутной плазмы выдерживают при 4°С в течение 18 ч. За это время на поверхности пробы большие, обладающие низкой плотностью хило­микроны образуют сметанообразный слой. Имеющие меньшие размеры и бо­лее высокую плотность частицы ЛПОНП не всплывают, и пробы остаются равномерно мутными. При значительной гиперлипидемии это распределение частиц может быть не таким четким.

в) Нарастание в одинаковой степени как холестерина, так и триглице­ридов, что возможно при наследственных гиперлипидемии (ЛПНП и ЛПОНП) или дисбеталипопротеинемии (ЛППП).

При этих заболеваниях часто бывают необходимы исследования липо­протеидов методами электрофореза или ультрацентрифугирования, чтобы оценить относительный вклад ЛПНП, ЛППП и ЛПОНП в развитие наблюдае­мой аномалии.

4. Обследования членов семьи больного.

Эти обследования необходимы, чтобы идентифицировать природу забо­левания, а также чтобы выявить других (возможно, не имеющих явных клинических признаков патологического процесса) больных.

Взятие крови для исследования липидов плазмы

Содержание липидов в плазме и соотношения липопротеидов являются вариабельными величинами, на которые влияют прием пищи, курение, по­требление алкоголя, изменения диеты, поза больного и стресс. Важно, чтобы условия взятия образцов крови при первичном обследовании и при после дующих анализах были стандартными, и некоторых случаях может оказать­ся необходимым повторение анализов, чтобы добиться получения наиболее воспроизводимых результатов. Следующие факторы являются важными.

1. Перед взятием крови пациент должен голодать в течение 14-16 ч. Больному не следует делать внутривенные вливания жидкостей, содержащих лппиды.

2. Перед проведением исследования в течение 2 нед пациент должен находиться на обычной для него диете и масса его тела должна оставаться постоянной.

3. Если не проводится мониторинг лечения, больному не следует на­значать какиелибо терапевтические мероприятия, направленные на по­нижение содержания липидов в плазме.

4. На определяемые величины концентрации липопротеидов (как п всех высокомолекулярных соединений) влияют застой крови в венах п поза пациента. При взятии крови у больного в положении лежа копцепттрация холестерина в плазме может быть приблизительно на 10% нп/ке, чем при взятии крови у этого же больного в положении стоя. Зависимость определяемой концентрации триглицеридов от позы пациента может быть даже несколько большей. При оценке эффекта лечения путем серип по­вторных анализов важно стандартизовать процедуру взятия крови. На­пример, в течение 30 мин перед взятием крови больному следует сидеть.

5. Проведение исследований, направленных на выявление и характе­ристику типа гиперлипидемий, предпочитают отложить на 3 мес после ин­фаркта миокарда, больших хирургических операций или любой тяжелой болезни, поскольку стресс может изменять содержание липидов в плазме. Однако исследования проб крови, взятой на протяжении первых 12 ч пос­ле инфаркта миокарда, по-видимому, отражают истинные величины содер­жания липидов в плазме.

6. Не следует гепаринизировать пробы крови; необходимо по возмож­ности быстро отделить плазму или сыворотку от клеточных элементов кровп.

Классификация по Фредериксону (ВОЗ)

Фредериксон предложил классификацию типов гиперлппидемии, осно­ванную на результатах электрофоретических исследований. Однако электрофореграммы, полученные в разное время при исследовании липидов крови одного и того же больного с первичной гиперлипидемией, могут быть различны, тогда как идентичные электрофореграммы могут быть получе. ны при различных патологических состояниях. Поскольку соответствую­щие термины все еще встречаются в медицинской литературе, читатель может воспользоваться табл. 22 для их сравнения с общепринятой терми­нологией.

Хиломикро-

Транспорт липидов

из клеток кишечника (экзогенных липидов)

Транспорт липидов, синтезируемых в печени (эндогенных липидов)

Промежуточ- ная форма

превращения ЛПОНП в ЛПНП под действием фермента

ЛП-липазы

Транспорт холестерола в ткани

Удаление избытка холестерола из клеток и других липопротеинов.

Донор апопротеинов А, С-II

Место образования

Эпителий

кишечника

Клетки печени

Кровь (из ЛПОНП и ЛППП)

Клетки печени − ЛПВП-пред- шественники

Плотность, г/мл

частиц, нМ

Больше 120

Основные

аполипопротеины

Примечание : ФЛ  фосфолипиды, ХС  холестерин, ЭХС  эфиры холестерина, ТАГ  триацилглицериды. Апопротеины: В-48  основной белок ХМ, В-100  основной белок ЛПОНП, ЛПНП, ЛППП, взаимодействует с рецепторами ЛПНП; С-II  активатор липопротеинлипазы (ЛП-липазы), переносится с ЛПВП на ХМ и ЛПОНП в крови; Е  участвует в связывании липопротеинов с рецепторами ЛПНП и другими рецепторами, А-I  активатор лецитинхолестеринацилтрансферазы (ЛХАТ) (согласно )

Липопротеины отличаются по своей функции.

1. Хиломикроны (ХМ) образуются в клетках кишечника, их функция: перенос экзогенного жира из кишечника в ткани (в основном  в жировую ткань), а также транспорт экзогенного холестерина из кишечника в печень.

2. Липопротеины очень низкой плотности (ЛПОНП) образуются в печени, их роль: транспорт эндогенного жира, синтезированного в печени из углеводов, в жировую ткань.

3.Липопротеины низкой плотности (ЛПНП) образуются в кровеносном русле из ЛОНП через стадию образования липопротеинов промежуточной плотности (ЛППП). Их роль: транспорт эндогенного холестерина в ткани.

4. Липопротеины высокой плотности (ЛПВП) образуются в печени, основная роль  транспорт холестерина из тканей в печень, т. е. удаление холестерина из тканей, а далее холестерин выводится с желчью.

5.3.8.1. Структура липопротеинов. Независимо от типа все липопротеины имеют сходное строение.

Они представляют собой сферические частицы, в которых можно выделить гидрофобную сердцевину, состоящую из ТАГ и эфиров холестерина (ЭХС) и гидрофильную оболочку, в составе которой – фосфолипиды, гликолипиды и белки. Компоненты частиц связаны слабыми типами связей и находятся в состоянии постоянной диффузии – способны перемещаться друг относительно друга. Белки, входящие в состав липопротеина и называемые апопротеинами (обозначаются латинскими буквами), могут быть или интегральными, не способными к отделению от липопротеина, т. е. присущи только этому типу липопротеина, или свободно переносимыми от одного типа липорпотеина к другому типу.

Функции апопротеинов в составе липопротеинов заключаются в: 1) формировании структуры липопротеинов; 2) взаимодействии с рецепторами на клеточной поверхности, тем самым определяется, с какими тканями связывается данный тип липопротеина; 3) активации ферментов липидного обмена. Иногда апопротеины сами обладают собственной ферментативной активностью; 4) выполнении функции эмульгаторов, так как апопротеины являются гидрофильными веществами; 5) транспорте липидов от одного типа липопротеина к другому.

5.3.8.2. Хиломикроны. Из ресинтезированных ТАГ, эфиров холестерина, фосфолипидов, поступивших с пищей жирорастворимых витаминов образуются комплексы липопротеинов, получившие название хиломикроны (ХМ), функция которых заключается в доставке экзогенных (пищевых) жиров в периферические ткани. ХМ содержат около 2 % белка, 7 % фосфолипидов, 8 % холестерина и его эфиров и более 80 % ТАГ. Диаметр ХМ колеблется от 0,1 до 5 мкм. Из-за больших размеров частиц ХМ не способны проникать из эндотелиальных клеток кишечника в кровеносные капилляры и диффундируют в лимфатическую систему кишечника, а из нее – в грудной лимфатический проток, из которого ХМ попадают в кровяное русло, где осуществляют транспорт ТАГ, холестерина и частично фосфолипидов из кишечника через лимфатическую систему в кровь.

Через 1–2 ч после приема пищи, содержащей жиры, повышается концентрация ТАГ в крови и появляются в кровеносном русле ХМ. Через 10–12 ч после приема пищи содержание ТАГ возвращается к нормальным величинам, а ХМ полностью исчезают из крови.

ХМ свободно диффундируют из плазмы крови в межклеточные пространства печени. Гидролиз ТАГ, содержащихся в ХМ, происходит как внутри печеночных клеток, так и на поверхности. ХМ не способны (из-за своих размеров) проникать в клетки жировой ткани, поэтому ТАГ ХМ подвергаются гидролизу на поверхности эндотелия капилляров жировой ткани при участии фермента липопротеинлипазы.

Основной апопротеин в составе ХМ  белок апоВ-48. Белок кодируется тем же геном, что и белок В-100, входящий в состав ЛПОНП, ЛПНП, ЛППП (см. таблицу) и синтезируемый в печени. В кишечнике происходит считывание лишь части гена, а именно 48 %, поэтому белок и получил свое название В-48, синтезируется он в шероховатом эндоплазматическом ретикулуме и гликозилируется. В аппарате Гольджи затем формируются так называемые «незрелые» ХМ. Они путем экзоцитоза попадают в главный грудной лимфатический проток, а через него в кровь. В лимфе и крови ХМ получают апопротеины Е и С-II, превращаясь в «зрелые» ХМ. После приема жирной пищи образовавшиеся ХМ опалесцируют, придавая плазме крови похожий на молоко вид. Транспортируя липиды к различным тканям, где они подвергаются расщеплению, ХМ постепенно исчезают из крови и плазма становится прозрачной.

Диагностическое значение имеют липопротеины крови, уровень которых является симптомом некоторых заболеваний, фактором риска развития сердечно-сосудистых осложнений атеросклероза. Именно о них и пойдет речь далее.

Классификация

Липопротеины, 4 основных класса:

  • ультранизкой плотности (ЛПУНП, хиломикроны);
  • очень низкой плотности (ЛПОНП);
  • низкой плотности (ЛПНП);
  • высокой плотности (ЛПВП).

Все ЛП имеют общий план строения. Классификация липидов проводится на основании различий состава, размера, плотности. Чем больше в составе жиров, тем меньшую плотность они имеют.

Функции липопротеинов схожи по своей сути. Все жиры, жироподобные вещества не растворяются водой. Плазма крови, осуществляющая транспорт всех питательных веществ организма, на 95% состоит из воды. Если бы жиры поступали в кровь неизмененными, то жировая капля рано или поздно закупоривала мелкий сосуд. Такое состояние является угрожающим для жизни и называется жировой эмболией.

Чтобы вышеописанная ситуация не происходила, холестерин, жиры транспортируются белками-переносчиками. Каждая молекула липопротеида образована фосфолипидной оболочкой, к которой крепится свободный холестерин, аполипопротеин, внутри которой располагается жировой компонент.

Самые крупные представители липопротеидов. Размер их молекулы составляет более 120 нм, отвечают за перенос пищевых жиров, холестерина к мышечным, жировым клеткам.

В своем развитии хиломикроны проходят три стадии:

  • зарождения;
  • зрелости;
  • остаточная.

На первом этапе клетки кишечника окружают нейтральные жиры, холестерин белково-фосфолипидной капсулой. Так формируется зарождающийся хиломикрон. 85% его массы составляют триглицериды, а белковый компонент представлен аполипопротеином В-48.

Липопротеиды ультранизкой плотности выработали интересный способ избежать встречи с клетками печени, которые использовали бы их ресурс для собственных нужд. ЛПУНП проникают в лимфатическое русло, поступая в общую систему кровотока через подключичную вену. Таким образом, они минуют систему воротных вен, которая доставила бы ЛПУНП к печени.

Циркулируя по кровеносному руслу, хиломикрон встречается с липопротеидом высокой плотности. Они обмениваются компонентами, делающими ЛПУНП податливыми к действию фермента липопротеиназы. Такой хиломикрон называют созревшим.

Клетки мышц, жировой ткани, их сосудистая стенка содержат на своей поверхности фермент липопротеиназа. Она захватывает проплывающие хиломикроны, извлекает из них жирные кислоты. Остаток липопротеида ультранизкой плотности взаимодействует с ЛПВП, совершая обратный обмен компонентами. Такой остаточный хиломикрон утилизируется клетками печени.

Диагностического значения определение количества ЛПУНП не имеет.

ЛПОНП

Размер молекул 30-80 нм. Вместе с ЛПНП они составляют . При их повышенном содержании образуются атеросклеротические бляшки.

  • перенос триглицеридов, которые являются основным жировым компонентом молекулы;
  • основа для синтеза ЛПНП.

От хиломикронов ЛПОНП отличаются размером, а также типом транспортируемых триглицеридов. Первые отвечают за доставку пищевых нейтральных жиров, вторые – синтезированных печенью.

В состав ЛПНП кроме триглицеридов входят апобелки: АпоС-2, АпоЕ, АпоВ-100. Поверхности клеток жировой ткани, скелетных мышц, миокарда содержат фермент липопротеинлипазу, которая реагирует с проплывающими мимо ЛПОНП. Полученные триглицериды клетки используют для получения из них энергии или формирования жировых запасов.

Выполнивший свою задачу липопротеид, возвращает ЛПВП АпоС-2, АпоЕ, превращаясь в липопротеин промежуточной плотности (ЛППП). Половина ЛППП утилизируется, половина трансформируется клетками печени в жиры низкой плотности.

От ЛПОНП ЛПНП отличаются более мелкими размерами - 18-26 нм, низким содержанием триглицеридов, высоким холестерина. Белковый компонент ЛПНП представлен апоВ-100, откуда их второе название - (липопротеиды B). Повышенное содержание ЛПНП наиболее активно стимулирует образование атеросклеротических бляшек на сосудистых стенках.

ЛПНП внутри фракции подразделяются на А-частицы, В-частицы. Первые имеют более крупный размер (20,6-22 нм), вторые мельче (19-20,5 нм). Высокую концентрацию В-частиц связывают с высоким риском ишемической болезни сердца, заболеваниями сосудов головного мозга, других осложнений атеросклероза.

Основная задача липопротеидов B – доставка клеткам холестерина, который синтезируется печенью. Также ЛПНП транспортируют каротиноиды, витамин Е, триглицериды. Менее изученные функции липопротеинов связаны с их иммунологической активностью. Предполагается, что они защищают организм от некоторых инфекций, например, золотистого стафилококка.

ЛПВП

Она отвечает за выведение излишков холестерина из организма. Поэтому такие частицы еще называют «хорошим холестерином». Размер ЛПВП среди все фракции наименьший – всего 8-11 нм.

Липопротеины этой группы синтезируются печенью из аполипопротеинов А1, А2, фосфолипидов. Молекула незрелого ЛПВП контактирует с другими липопротеидами, клетками, отбирая у них холестерин. Так частица приобретает округлую форму и окончательную степень зрелости.

Зрелые молекулы захватываются клетками печени, которые изымают из него холестерин. Стерол используется при синтезе желчных кислот, излишки удаляются вместе с калом.

Нормальное содержание у мужчин, женщин

Содержание ЛП неодинаково, у мужчин уровень жиров растет на протяжении всей жизни, а у женщин рост концентрации до наступления менопаузы сдерживается половыми гормонами эстрогенами. Поэтому мужчины склонны к более раннему развитию атеросклероза, ишемической болезни сердца, чем женщины. После наступления менопаузы липопротеиды начинают расти, что связано с резким снижением концентрации эстрогенов.

Таблица. Липопротеины крови у мужчин, женщин по возрастам.

Возраст, лет Пол Общий холестерин, ммоль/л ЛПНП, ммоль/л ЛПВП, ммоль/л
5-10 м 3.12-5.24 1.62-3.33 0.97-1.93
ж 2.25-5.31 1.75-3.62 0.92-1.88
10-15 м 3.07-5.22 1.65-3.43 0.95-1.90
ж 3.20-5.19 1.75-3.51 0.95-1.80
15-20 м 2.94-5.09 1.60-3.36 0.77-1.62
ж 3.09-5.17 1.52-3.54 0.90-1.90
20-25 м 3.15-5.58 1.70-3.80 0.77-1.62
ж 3.15-5.58 1.47-4.11 0.84-2.03
25-30 м 3.43-6.31 1.80-4.26 0.79-1.62
ж 3.31-5.74 1.83-4.24 0.95-2.14
30-35 м 3.56-6.57 2.01-4.78 0.71-1.62
ж 3.36-5.95 1.80-4.03 0.92-1.98
35-40 м 3.77-6.98 2.09-4.89 0.74-1.59
ж 3.64-6.26 1.93-4.44 0.87-2.11
40-45 м 3.90-6.93 2.24-4.81 0.69-1.72
ж 3.80-6.52 1.91-4.50 0.87-2.27
45-50 м 4.08-7.14 2.50-5.22 0.77-1.65
ж 3.93-6.85 2.04-4.81 0.87-2.24
50-55 м 4.08-7.14 2.30-5.09 0.71-1.62
ж 4.21-7.37 2.27-5.20 0.95-2.37
55-60 м 4.03-7.14 2.27-5.25 0.71-1.83
ж 4.44-7.76 2.30-5.43 0.95-2.34
60-65 м 4.11-7.14 2.14-5.43 0.77-1.90
ж 4.44-7.68 2.58-5.79 0.97-2.37
65-70 м 4.08-7.11 2.53-5.43 0.77-1.93
ж 4.42-7.84 2.37-5.71 0.90-2.47

Уровень ЛПОНП не зависит от пола и возраста, нормальной концентрацией считается 0,26-1,04 ммоль/л.

Липопротеины беременных женщин выше, чем небеременных. Основную роль в изменении липидного обмена играет гормональная перестройка организма, а также особенности накопления жировой ткани. Максимального уровня показатели липопротеидов достигают к третьему триместру, а через некоторое время после родов нормализируются до обычного уровня.

Таблица. Нормы липопротеинов у беременных женщин.

Показатель Единицы измерения Небеременная женщина Первый триместр Второй триместр Третий триместр
Холестерин общий ммоль/л менее 5,17 3,64-5,43 4,55-7,73 5,66-9,03
мг/дл менее 200 140-209 175-298 218-348
ммоль/л менее 2,58 1,54-3,95 1,98-4,76 2,61-5,7
мг/дл менее 100 59-152 76-183 100-223
ЛПВП ммоль/л 1,03-1,54 1,03-2,01 1,34-2,24 1,23-2,24
мг/дл 39-60 39-77 51-86 47-86
ЛПОНП ммоль/л 0,15-1,03 0,25-0,46 0,33-0,5 0,53-0,92
мг/дл 5-40 9-17 11-22 20-35

Диагностика дислипопротеинемии

Дислипопротеинемией называют нарушение липидного обмена, приводящее к повышению или снижению уровня липопротеидов. Высокие или низкие липопротеины себя не проявляют. Изменение уровня ЛП происходит задолго до появления первых симптомов. Признаки дислипопротеинемии могут быть различными, ведь симптомы будут зависеть от основного заболевания внутренних органов, которое сопровождается нарушением жирового обмена.

Например, проявляется быстрой утомляемостью, головными болями, нечетким мышлением, сахарный диабет – жаждой, повышенным мочеотделением, чувством постоянного голода, гипертиреоз – повышенной суетливостью, раздражительностью, эмоциональной нестабильностью.

Поэтому диагностировать пониженное или повышенное содержание липопротеидов можно только лабораторно. Для анализа требуется произвести забор венозной крови. Перед исследованием необходимо 12 часов соблюдать голодную диету, пить только воду. Накануне стоит отказаться от алкоголя, излишне жирной пищи, серьезных занятий спортом. Анализ сдается утром (до 10 часов). За полчаса до сдачи крови нельзя курить, желательно не нервничать, избегать физической работы.

Показания к анализу

  • здоровым – как средство мониторинга атеросклероза;
  • больным атеросклерозом – для определения текущего состояния здоровья, эффективности лечения;
  • пациентам с подозрением на наличие заболеваний внутренних органов, связанных с дислипопротеинемиями.

Профилактический контроль советуют начинать с детского возраста. Первый раз липидограмму делают в 9-11 лет, затем – 17-21. Дети, склонные к раннему развития атеросклероза, сдают анализ крови с 2-8 лет.

Взрослые старше 20 лет должны проверять липопротеиды каждые 4-6 лет. Более частые исследования показаны лицам, которые находятся в группе риска ранней ишемической болезни сердца.

Больные атеросклерозом регулярно сдают анализ крови . Это помогает врачу контролировать эффективность лечения, корректировать дозу препарата. Например, при приеме статинов пациенты проходят исследования вначале каждые 2-4 недели, затем 1 раз/2 месяца, постепенно снижая частоту анализов до 1 раза/несколько месяцев.

Причины дислипопротеинемий

Повышенные или пониженные липопротеиды могут быть следствием заболеваний, нездорового образа жизни, длительного голодания, а у женщин – беременности. Для определения причины врачу иногда достаточно имеющихся данных: симптомов заболевания, истории болезни. Однако гораздо чаще для точной диагностики пациенту необходимо пройти дополнительные обследования.

Повышенные показатели

Высокие бета липопротеиды считаются нормой только для беременных. Повышенный уровень ЛПНП чаще всего следствие диеты, богатой насыщенными, транс жирами, бедной клетчаткой, излишнего веса, малоподвижности. Однако существует ряд заболеваний, для которых типичны высокие липопротеины:

  • гиперлипопротеинемии 1А, 2В типов;
  • недостаточная функция щитовидной железы;
  • хроническая почечная недостаточность;
  • нефротический синдром;
  • закупорка желчевыводящих протоков;
  • нервная анорексия;
  • сахарный диабет;
  • синдром Кушинга.

Прием бета-блокаторов, глюкокортикоидов, андрогенов, оральных контрацептивов, прогестинов, диуретиков вызывает повышение холестерина.

ЛПОНП увеличиваются при избыточном весе, злоупотреблении спиртным, незначительно при беременности (норма), а также следующих заболеваниях:

  • болезни Нимана-Пика;
  • гиперлипидемии 3, 4, 5 типов;
  • гипотиреозе;
  • гликогенозах;
  • хронической почечной недостаточности;
  • нефротическом синдроме;
  • недостаточности гипофиза;
  • сахарном диабете;
  • системной красной волчанке.

ЛПВП повышаются нечасто. Это может быть связано с:

  • гипер-альфапротеинемией;
  • гипо-бета-липопротеинемией;
  • лечением инсулином;
  • нетипичной физической нагрузкой;
  • умеренным потреблением алкоголя;
  • хроническими заболеваниями печени.

Пониженные показатели

Низкие липопротеины – тоже плохо, поскольку понижение концентрации типично для заболеваний, травм. Это утверждение не относится к ЛПОНП, низкий уровень которых не имеет диагностического значения.

ЛПНП понижены при следующих состояниях, заболеваниях:

  • артритах;
  • болезни Танжера;
  • гипертиреозе;
  • гипо-, а-бета-липопротеинемии;
  • дефиците лецитинхолестеролацилсинетатазы;
  • диете, содержащей недостаточное количество насыщенных жиров, холестерина;
  • миеломной болезни;
  • остром стрессе;
  • синдроме мальабсорбции;
  • синдроме Рейе;
  • хронических анемиях;
  • хронических заболеваниях легких;

Прием ловастатина, холестирамина, интерферона, неомицина, эстрогенов, тироксина, также снижает уровень ЛПНП.

Низкие ЛПВП – плохой прогностический показатель. Люди, имеющие пониженную концентрацию ЛПВП более склонны к атеросклерозу, сердечно-сосудистым заболеваниям. Другие состояния, сопровождающиеся низкими значениями липопротеидов высокой плотности:

  • гипо-, а-альфа-липопротеинемия;
  • голодание;
  • заболевание почек (хроническая почечная недостаточность, нефротический синдром);
  • курение;
  • ожирение;
  • сахарный диабет;
  • хронические печеночные патологии.

Снижение концентрации ЛПВП происходит на фоне приема андрогенов, бета-блокаторов, прогестинов, даназола, диуретиков.

Литература

  1. Kenneth R Feingold, MD and Carl Grunfeld, MD, PhD. Introduction to Lipids and Lipoproteins, 2018
  2. Michael W King, PhD. Lipoproteins, Lipoprotein Metabolism and Disease, 2018
  3. Prof David Marais. The lipoproteins: HDL and LDL, 2018

Последнее обновление: Август 22, 2019