Домой / Дом / Применение интегрального исчисления в астрономии. Интегралы для чайников: как решать, правила вычисления, объяснение. Вычисление длины дуги плоской кривой

Применение интегрального исчисления в астрономии. Интегралы для чайников: как решать, правила вычисления, объяснение. Вычисление длины дуги плоской кривой

И интегрального исчисления к решению физических задач» имеет своей целью изучение курса физики на основе математического анализа.

Данный курс углубляет материал курса алгебры и начал анализа в десятом и одиннадцатом классах и раскрывает возможности для практического закрепления материала по темам, входящим в школьный курс физики. Это темы «Механика», «Электростатика», «Термодинамика» в физике, и некоторые темы алгебре и начал анализа. В результате данный факультативный курс реализует межпредметную связь алгебры и математического анализа с физикой.

Цели факультативного курса.

1. Обучающие: провести практическое закрепление по темам «Механика», «Электростатика», «Термодинамика», проиллюстрировать реализацию межпредметной связи математического анализа с физикой.

2. Воспитывающие: создание условий для успешного профессионального самоопределения учащихся посредством решения трудных задач, воспитание мировоззрения и ряда личностных качеств, средствами углубленного изучения физики.

3. Развивающие: расширение кругозора учащихся, развитие математического мышления, формирование активного познавательного интереса к предмету, развитие профессиональных интересов учащихся, развитие навыков самостоятельной и исследовательской деятельности , развитие рефлексии учащихся (осознание своих склонностей и способностей, необходимыми для будущей профессиональной деятельности).


Примеры решения задач по физике посредствам математического аппарата.

Приложение дифференциального исчисления к решению некоторых задач механики.

1. Работа. Найдем работу, которую совершает заданная сила F при перемещении по отрезку оси х. Если сила F постоянна, то работа А равна произведению F на длину пути. Если сила меняется, то ее можно рассматривать как функцию от х: F = F (x ). Приращение работы А на отрезке [х, x + dx ] нельзя точно вычислить как произведение F (x ) dx , так как сила меняется, на этом отрезке. Однако при маленьких dx можно считать, что сила меняется незначительно и произведение представляет главную часть , т. е. является дифференциалом работы (dA = = F (x ) dx ). Таким образом, силу можно считать производной работы по перемещению.

2. Заряд. Пусть q - заряд, переносимый электрическим током через поперечное сечение проводника за время t . Если сила тока / постоянна, то за время dt ток перенесет заряд, равный Idt . При силе тока, изменяющейся со временем по закону / = /(/), произведение I (t ) dt дает главную часть приращения заряда на маленьком отрезке времени [t , t +- dt ], т.е.- является дифференциалом заряда: dq = I (t ) dt . Следовательно, сила тока является производной заряда по времени.

3. Масса тонкого стержня. Пусть имеется неоднородный тонкий стержень. Если ввести координаты так, как показано на рис. 130, то функция т= т(1) - масса куска стержня от точки О до точки /. Неоднородность стержня означает, что его линейная плотность не является постоянной, а зависит от положения точки / по некоторому закону р = р(/). Если на маленьком отрезке стержня предположить, что плотность постоянна и равна р(/), то произведение p(/)d/ дает дифференциал массы dm . Значит, линейная плотность - это производная массы по длине.

4. Теплота. Рассмотрим процесс нагревания какого-нибудь вещества и вычислим количество теплоты Q { T ), которое необходимо, чтобы нагреть 1 кг вещества от 0 °С до Т. Зависимость Q = Q (T ) очень сложна и определяется экспериментально. Если бы теплоемкость с данного вещества не зависела от температуры, то произведение cdT дало бы изменение количества теплоты. Считая на малом отрезке [T , T + dT ] теплоемкость постоянной, получаем дифференциал количества теплоты dQ = c (T ) dT . Поэтому теплоемкость - это производная теплоты по температуре.

5. Снова работа. Рассмотрим работу как функцию времени. Нам известна характеристика работы, определяющая ее скорость по времени, - это мощность. При работе с постоянной мощностью N работа за время dt равна Ndt . Это выражение представляет дифференциал работы, т.е. dA = N (t ) dt , и мощность выступает как производная работы по времени.

Все приведенные примеры были построены по одному и тому знакомыми нам из курса физики: работа, перемещение, сила; заряд, время, сила тока; масса, длина, линейная плотность; и т. д. Каждый раз одна из этих величин выступала как коэффициент пропорциональности между дифференциалами двумя других, т. е. каждый раз появлялось соотношение вида dy = k (x ) dx . На такое соотношение можно смотреть как на способ определения величины k (x ). Тогда k (x ) находится (или определяется) как производная у по х. Этот вывод мы и фиксировали в каждом примере. Возможна и обратная постановка вопроса: как найти зависимость у от х из заданного соотношения между их дифференциалами.


Приложения определенного интеграла к решению некоторых задач механики.

1.Моменты и центры масс плоских кривых. Если дуга кривой задана уравнением y = f (x ), a x b , и имеет плотность = (x ) , то статические моменты этой дуги Mx и My относительно координатных осей Ox и O y равны

https://pandia.ru/text/80/201/images/image004_89.gif" width="215" height="101 src=">а координаты центра масс и - по формулам где l - масса дуги, т. е.

2. Физические задачи. Некоторые применения определенного интеграла при решении физических задач иллюстрируются ниже в примерах.

Скорость прямолинейного движения тела выражается формулой (м/с). Найти путь, пройденный телом за 5 секунд от начала движения.

Так как путь, пройденный телом со скоростью (t ) за отрезок времени , выражается интегралом то имеем:

Уравнение механического движения. Пусть материальная точка массы т движется под действием силы F по оси х. Обозначим t время ее движения, и - скорость, а - ускорение. Второй закон Ньютона, а m = F примет вид дифференциального уравнения, если записать ускорение, а как вторую производную: a = x ’’.

План

1. История интегрального исчисления.

2. Определение и свойства интеграла.

3. Криволинейная трапеция.

4. Свойства определенного интеграла.

5. Набор стандартных картинок.

6. Применение интеграла.

История интегрального исчисления

История понятия интеграла тесно связана с задачами нахождения квадратур. Задачами о квадратуре той или иной плоской фигуры математики Древней Греции и Рима называли задачи на вычисление площадей. Латинское слово quadratura переводится как “придание квадратной формы”. Необходимость в специальном термине объясняется тем, что в античнoe время (и позднее, вплоть до XVIII столетия) еще не были достаточно развиты представления о действительных числах. Математики оперировали с их геометрическими аналогами или скалярными величинами, которые нельзя перемножать. Поэтому и задачи на нахождение площадей приходилось формулировать, например, так: «Построить квадрат, равновеликий данному кругу». (Эта классическая задача “о квадратуре круга”

круга» не может, как известно, быть решена с помощью циркуля и линейки.)

Символ ò введен Лейбницем (1675 г.). Этот знак является изменением латинской буквы S (первой буквы слова summa). Само слово интеграл придумал Я. Б е р н у л л и (1690 г.). Вероятно, оно происходит от латинского integro, которое переводится как приводить в прежнее состояние, восстанавливать. (Действительно, операция интегрирования «восстанавливает» функцию, дифференцированием которой получена подынтегральная функция.) Возможно, происхождение термина интеграл иное: слово integer означает целый.

В ходе переписки И. Бернулли и Г. Лейбниц согласились с предложением Я. Бернулли. Тогда же, в 1696 г., появилось и название новой ветви математики-интегральное исчисление (calculus integralis), которое ввел И. Бернулли.

Другие известные ермины, относящиеся к интегральному исчислению, появились заметно позднее. Употребляющееся сейчас название первообразная функция заменило более раннее «примитивная функция», которое ввел Лагранж (1797 г.). Латинское слово primitivus переводится как «начальный»: F(x) = ò f(x)dx ­- начальная (или первоначальная, или первообразная) для f(x), которая получается из F(x) дифференцированием.

В современной литературе множество всех первообразных для функции f(х) называется также неопределенным интегралом. Это понятие выделил Лейбниц, который заметил, что все первообразные функции отличаются на произвольную постоянную. b

называют определенным интегралом (обозначение ввел К. Фурье (1768-1830), но пределы интегрирования указывал уже Эйлер).

Многие значительные достижения математиков Древней Греции в решении задач на нахождение квадратур (т. е. вычисление площадей) плоских фигур, а также кубатур (вычисление объемов) тел связаны с применением метода исчерпывания, предложенным Евдоксом Книдским (ок. 408 - ок. 355 до н.э.). С помощью этого метода Евдокс доказал, например, что площади двух кругов относятся как квадраты их диаметров, а объем конуса равен 1/3 объёма цилиндра, имеющего такие же основание и высоту.

Метод Евдокса был усовершенствован Архимедом. Основные этапы, характеризующие метод Архимеда: 1) доказывается, что площадь круга меньше площади любого описанного около него правильного многоугольника, но больше площади любого вписанного; 2) доказывается, что при неограниченном удвоении числа сторон разность площадей этих многоугольников стремится к нулю; 3) для вычисления площади круга остается найти значение, к которому стремится отношение площади правильного многоугольника при неограниченном удвоении числа его сторон.

С помощью метода исчерпывания, целого ряда других остроумных соображений (в том числе с привлечением моделей механики) Архимед решил многие задачи. Он дал оценку числа p (3.10/71

Архимед предвосхитил многие идеи интегрального исчисления. (Добавим, что практически и первые теоремы о пределах были доказаны им.) Но потребовалось более полутора тысяч лет, прежде чем эти идеи нашли четкое выражение и были доведены до уровня исчисления.

Математики XVII столетия, получившие многие новые результаты, учились на трудах Архимеда. Активно применялся и другой метод - метод неделимых, который также зародился в Древней Греции (он связан в первую очередь с атомистическими воззрениями Демокрита). Например, криволинейную трапецию (рис. 1, а) они представляли себе составленной из вертикальных отрезков длиной f(х), которым тем не менее приписывали площадь, равную бесконечно малой величине f(х)dx. В соответствии с таким пониманием искомая площадь считалась равной сумме

бесконечно большого числа бесконечно малых площадей. Иногда даже подчеркивалось, что отдельные слагаемые в этой сумме - нули, но нули особого рода, которые, сложенные в бесконечном числе, дают вполне определенную положительную сумму.

На такой кажущейся теперь по меньшей мере сомнительной основе И. Кеплер (1571-1630) в своих сочинениях “Новая астрономия”.

(1609 г.) и «Стереометрия винных бочек» (1615 г.) правильно вычислил ряд площадей (например, площадь фигуры ограниченной эллипсом) и объемов (тело разрезалось на 6ecконечно тонкие пластинки). Эти исследования были продолжены итальянскими математиками Б. Кавальери (1598-1647) и Э.Торричелли (1608-1647). Сохраняет свое значение и в наше время сформулированный Б. Кавальери принцип, введенный им при некоторых дополнительных предположениях.

Пусть требуется найти площадь фигуры, изображенной на рисунке 1,б, где кривые, ограничивающие фигуру сверху и снизу, имеют уравнения y = f(x) и y=f(x)+c.

Представляя фигуру составленной из «неделимых», по терминологии Кавальери, бесконечно тонких столбиков, замечаем, что все они имеют общую длину с. Передвигая их в вертикальном направлении, можем составить из них прямоугольник с основанием b-а и высотой с. Поэтому искомая площадь равна площади полученного прямоугольника, т.е.

S = S1 = c (b – а).

Общий принцип Кавальери для площадей плоских фигур формулируется так: Пусть прямые некоторого пучка параллельных пересекают фигуры Ф1 и Ф2 по отрезкам равной длины (рис. 1,в). Тогда площади фигур Ф1 и Ф2 равны.

Аналогичный принцип действует в стереометрии и оказывается полезным при нахождении объемов.

В XVII в. были сделаны многие открытия, относящиеся к интегральному исчислению. Так, П.Ферма уже в 1629 г. задачу квадратуры любой кривой у = хn, где п - целое (т.е по существу вывел формулу ò хndx = (1/n+1)хn+1), и на этой основе решил ряд задач на нахождение центров тяжести. И. Кеплер при выводе своих знаменитых законов движения планет фактически опирался на идею приближенного интегрирования. И. Барроу (1630-1677), учитель Ньютона, близко подошел к пониманию связи интегрирования и дифференцирования. Большое значение имели работы по представлению функций в виде степенных рядов.

Владимир 2002 год

Владимирский государственный университет, Кафедра общей и прикладной физики

Вступление

Символ интеграла введен с 1675г., а вопросами интегрального исчисления занимаются с 1696г. Хотя интеграл изучают, в основном, ученые–математики, но и физики внесли свой вклад в эту науку. Практически ни одна формула физики не обходится без дифференциального и интегрального исчислений. Поэтому, я и решила исследовать интеграл и его применение.

История интегрального исчисления

История понятия интеграла тесно связана с задачами нахождения квадратур. Задачами о квадратуре той или иной плоской фигуры математики Древней Греции и Рима называли задачи на вычисление площадей. Латинское слово quadratura переводится как “придание квадратной формы”. Необходимость в специальном термине объясняется тем, что в античнoe время (и позднее, вплоть до XVIII столетия) еще не были достаточно развиты представления о действительных числах. Математики оперировали с их геометрическими аналогами или скалярными величинами, которые нельзя перемножать. Поэтому и задачи на нахождение площадей приходилось формулировать, например, так: «Построить квадрат, равновеликий данному кругу». (Эта классическая задача “о квадратуре круга” круга» не может, как известно, быть решена с помощью циркуля и линейки.)

Символ ò введен Лейбницем (1675 г.). Этот знак является изменением латинской буквы S (первой буквы слова summ a). Само слово интеграл придумал Я. Б е р н у л л и (1690 г.). Вероятн о, оно происходит от латинского integro , которое переводится как приводит ь в прежнее состояние, восстанавливать. (Действительно, операция интегрирования « восстанавливает» функцию, дифференцированием которой получена подынтегральная функция.) Возможно, происхождение термина инте грал иное: слово integer означает целый.

В ходе переписки И. Бернулли и Г. Лейбниц согласил ись с предложением Я. Бернулли. Тогда же, в 1696 г., появилось и название новой ветви математики-интегральное исчисление (calculus integralis), которое ввел И. Бернулли.

Другие известные ермины, относящиеся к интегральному исчислению, появились заметно позднее. Употребляющееся сейчас название первообразная функция заменило бол ее раннее «примитивная функция», которое ввел Лагранж (1797 г.). Латинское сл ово primitivus переводится как «начальный»: F(x) = ò f(x)dx - начальная (или первоначальная, или первообразная) для f (x), которая получается из F(x) дифференцированием.

В современной литературе множество всех первообразных для функции f(х) называется также неопределенным интегралом. Это понятие выделил Лейбниц, который заметил, что вс е первообразные функции отличаются на произвольну ю постоянну ю. b

называют определенным интегралом (обоз начение ввел К. Фурье (1768-1830), но пределы интегрирования указывал уже Эй лер).

Многие значительные достижения математиков Древней Греции в решении задач на нахождение квадратур (т. е. вычисление площадей) плоских фигур, а также кубатур (вычисление объемов) тел связаны с применением метода исчерпывания, предложенным Евдоксом Книдским (ок. 408 - ок. 355 до н.э.). С помощью этого метода Евдокс доказал, например, что площади двух кругов относятся как квадраты их диаметров, а объем конуса равен 1/3 объёма цилиндра, имеющего такие же основание и высоту.

Метод Евдокса был усовершенствован Архимедом. Основные этапы, характеризующие метод Архимеда: 1) доказывается, что площадь круга меньше площади любого описанного около него правильного многоугольника, но больше площади любого вписанного; 2) доказывается, что при неограниченном удвоении числа сторон разность площадей этих многоугольн иков стремится к нулю; 3) для вычисления площади круга остается найти значение, к которому стремится отношение площади правильного многоугольника при неограниченном удвоении числа его сторон.

С помощью метода исчерпывания, целого ряда других остроумных соображений (в том числе с привлечением моделей механики) Архимед решил многие задачи. Он дал оценку числа p (3.10/71

Архимед предвосхитил многие идеи интегрального исчисления. (Добавим, что практически и первые теоремы о пределах были доказаны им.) Но потребовалось более полутора тысяч лет, прежде чем эти идеи нашли четкое выражение и были доведены до уровня исчисления.

Математики XVII столетия, получившие многие новые результаты, учились на трудах Архимеда. Активно применялся и другой метод - метод неделимых, который также зародился в Древней Греции (он связан в первую очередь с атомистическими воззрениями Демокрита). Например, криволинейную трапецию (рис. 1, а) они представляли себе составленной из вертикал ьных отрезков длиной f(х), которым тем не менее приписывали площадь, равну ю бесконечно малой величине f(х)dx . В соответствии с таким пониманием искомая площадь считалась равной сумме

бесконечно большого числа бесконечно малых площадей. Иногда даже подчеркивалось, что отдельные слагаемые в этой сумме - нули, но нули особого рода, которые, сложенные в бесконечном числе, дают вполне определенную положительную сумму.

На такой кажущейся теперь по меньшей мере сомнительной основе И. Кеплер (1571-1630) в своих сочинениях “Новая астрономия”.

(1609 г.) и «Стереометрия винных бочек» (1615 г.) правильно вычислил ряд площадей (например, площадь фигуры ограниченной эллипсом) и объемов (тело разрезалось на 6ecконечно тонкие пластинки). Эти исследования были продолжены итальянскими математиками Б. Кавальери (1598-1647) и Э.Торричелли (1608-1647). Сохраняет свое значение и в наше время сформулированный Б. Кавальери принцип, введенный им при некоторых дополнительных предположениях.

Пусть требуется найти площадь фигуры, изображенной на рисунке 1,б, где кривые, ограничивающие фигуру сверху и снизу, имеют уравнения y = f(x) и y=f(x)+c.

Представляя фигуру составленной из «неделимых», по терминологии Кавальери, бесконечно тонких столбиков, замечаем, что все они имеют общую длину с. Передвигая их в вертикальном направлении, можем составить из них прямоугольник с основанием b-а и высотой с. Поэтому искомая площадь равна площади полученного прямоугольника, т.е.

S = S1 = c (b – а).

Общий принцип Кавальери для площадей плоских фигур формулируется так: Пусть прямые некоторого пучка параллельных пересекают фигуры Ф1 и Ф2 по отрезкам равной длины (рис. 1,в). Тогда площади фигур Ф1 и Ф2 равны.

Аналогичный принцип действует в стереометрии и оказывается полезны м при нахождении объемов.

В XVII в. были сделаны многие открытия, относящиеся к интегральному исчислению. Так, П.Ферма уже в 1629 г. задачу квадратуры любой кривой у = хn, где п - целое (т.е по существу вывел формулу ò хndx = (1/n+1)хn+1), и на этой основе решил ряд задач на нахождение центров тяжести. И. Кеплер при выводе своих знаменитых законов движения планет фактически опирался на идею приближенного интегрирования. И. Барроу (1630-1677), учитель Ньютона, близко подошел к пониманию связи интегрирования и дифференцирования. Большое значение имели работы по представлению функций в виде степенных рядов.

Однако при всей значимости результатов, полученных многими чрезвычайно изобретательными математиками XVII столетия исчисления еще не было. Необходимо было выделить общие идеи лежащие в основе решения многих частных задач, а также установить связь операций дифференцирования и интегрирования, дающую достаточно общий алгоритм. Это сделали Ньютон и Лейбниц, открывшие независимо друг от друга факт, известным под названием формулы Ньютона - Лейбница. Тем самым окончательно оформился общий метод. Предстояло еще научится находить первообразные многих функций, дать логические нового исчисления и т. п. Но главное уже было сделано: дифференциальное и интегральное исчисление создано.

Методы математического анализа активно развивались в следующем столетии (в первую очередь следует назвать имена Л. Эйлера, завершившего систематическое исследование интегрирования элементарных функций, и И. Бернулли). В развитии интегрального исчисления приняли участие русские математики М.В.Остроградский (1801-1862), В.Я.Буняковский (1804-1889), П.Л.Че бышев (1821-1894). Принципиальное значение имели, в частности, результаты Чебышева, доказавшего, что существуют интегралы, не выразимые через элементарные функции.

Строгое изложение теории интеграла появилось только в прошлом веке. Решение этой задачи связано с именами О.Коши, одного из крупнейших математиков, немецкого ученого Б.Римана (1826-1866), французского математика Г.Дарбу (1842-1917).

Ответы на многие вопросы, связанные с существованием площадей и объемов фигур, были получены с созданием К. Жорданом (1838-1922) теории меры.

Различные обобщения понятия интеграла уже в начале нашего столетия были предложены французскими математиками А. Лебегом (1875-1941) и А. Данжуа (188 4-1974), со ветским математиком А. Я. Х инчинчин ым (1894-1959).

Определение и свойства интеграла

Если F(x) – одна из первообразных функции f(x) на промежутке J, то первообразная на этом промежутке имеет вид F(x)+C, где CÎR.

Определение. Множество всех первообразных функции f(x) на промежутке J называется определенным интегралом от функции f(x) на этом промежутке и обозначается ò f(x)dx.

ò f(x)dx = F(x)+C, где F(x) – некоторая первообразная на промежутке J.

f – подынтегральная функция, f(x) – подынтегральное выражение, x – переменная интегрирования, C – постоянная интегрирования.

Свойства неопределенного интеграла.

(ò f(x)dx) ¢ = ò f(x)dx ,

ò f(x)dx = F(x)+C, где F ¢(x) = f(x)

(ò f(x)dx) ¢= (F(x)+C) ¢= f(x)

ò f ¢(x)dx = f(x)+C – из определения.

ò k f (x)dx = k ò f¢(x)dx

если k – постоянная и F ¢(x)=f(x),

ò k f (x)dx = k F(x)dx = k(F(x)dx+C1)= k ò f¢(x)dx

ò (f(x)+g(x)+...+h(x))dx = ò f(x)dx + ò g(x)dx +...+ ò h(x)dx

ò (f(x)+g(x)+...+h(x))dx = ò dx =

= ò ¢dx = F(x)+G(x)+...+H(x)+C=

= ò f(x)dx + ò g(x)dx +...+ ò h(x)dx, где C=C1+C2+C3+...+Cn.

Интегрирование

Табличный способ.

Способ подстановки.

Если подынтегральная функция не является табличным интегралом, то возможно (не всегда) применить этот способ. Для этого надо:

разбить подынтегральную функцию на два множителя;

обозначить один из множителей новой переменной;

выразить второй множитель через новую переменную;

составить интеграл, найти его значение и выполнить обратную подстановку.

Примечание: за новую переменную лучше обозначить ту функцию, которая связана с оставшимся выражением.

1. ò xÖ(3x2–1)dx;

Пусть 3x2–1=t (t³0), возьмем производную от обеих частей:

ó dt 1 1 ó 1 1 t 2 2 1 ---Ø

ô- t 2 = - ô t 2dt = – --– + C = -Ö 3x2–1 +C

ò sin x cos 3x dx = ò – t3dt = – – + C

Пусть cos x = t

Метод преобразования подынтегральной функции в сумму или разность:

ò sin 3x cos x dx = 1/2 ò (sin 4x + sin 2x) dx = 1/8 cos 4x – ¼ cos 2x + C

ó x4+3x2+1 ó 1 1

ô---- dx = ô(x2+2 – --–) dx = - x2 + 2x – arctg x + C

õ x2+1 õ x2+1 3

Примечание: при решении этого примера хорошо делать многочлены ”углом”.

По частям

Если в заданном виде взять интеграл невозможно, а в то же время, очень легко находится первообразная одного множителя и производная другого, то можно использовать формулу.

(u(x)v(x))^=u^(x)v(x)+u(x)v(x)

u^(x)v(x)=(u(x)v(x)+u(x)v^(x)

Проинтегрируем обе части

ò u^(x)v(x)dx=ò (u(x)v(x))^dx – ò u(x)v^(x)dx

ò u^(x)v(x)dx=u(x)v(x)dx – ò u(x)v^(x)dx

ò x cos (x) dx = ò x dsin x = x sin x – ò sin x dx = x sin x + cos x + C

Криволинейная трапеция

Определение. Фигура, ограниченная графиком непрерывной, знакопостоянной функции f(x), осью абцисс и прямыми x=a, x=b, называется криволинейной трапецией.

Способы нахождения площади криволинейной трапеции

Теорема. Если f(x) непрерывная и неотрицательная функция на отрезке , то площадь соответствующей криволинейной трапеции равна приращению первообразных.

Дано: f(x)– непрерывная неопр. функция, xÎ.

Доказать: S = F(b) – F(a), где F(x) – первообразная f(x).

Доказательство:

Докажем, что S(a) – первообразная f(x).

D(f) = D(S) =

S^(x0)= lim(S(x0+Dx) – S(x0) / Dx), при Dx®0 DS – прямоугольник

Dx®0 со сторонами Dx и f(x0)

S^(x0) = lim(Dx f(x0) /Dx) = lim f(x0)=f(x0): т.к. x0 точка, то S(x) –

Dx®0 Dx®0 первообразная f(x).

Следовательно по теореме об общем виде первообразной S(x)=F(x)+C.

Т.к. S(a)=0, то S(a) = F(a)+C

S = S(b)=F(b)+C = F(b)–F(a)

Предел этой суммы называют определенным интегралом.

Сумма стоящая под пределом, называется интегральной суммой.

Определенный интеграл это предел интегральной суммы на отрезке при n®¥. Интегральная сумма получается как предел суммы произведений длины отрезка, полученного при разбиении области определения функции в какой либо точке этого интервала.

a - нижний предел интегрирования;

b - верхний.

Формула Ньютона–Лейбница.

Сравнивая формулы площади криволинейной трапеции делаем вывод:

если F – первообразная для b на , то

ò f(x)dx = F(b)–F(a)

ò f(x)dx = F(x) ô = F(b) – F(a)

Свойства определенного интеграла.

ò f(x)dx = ò f(z)dz

ò f(x)dx = F(a) – F(a) = 0

ò f(x)dx = – ò f(x)dx

ò f(x)dx = F(a) – F(b) ò f(x)dx = F(b) – F(a) = – (F(a) – F(b))

Если a, b и c любые точки промежутка I, на котором непрерывная функция f(x) имеет первообразную, то

ò f(x)dx = ò f(x)dx + ò f(x)dx

F(b) – F(a) = F(c) – F(a) + F(b) – F(c) = F(b) – F(a)

(это свойство аддитивности определенного интеграла)

Если l и m постоянные величины, то

ò (lf(x) +m j(x))dx = l ò f(x)dx + m òj(x))dx –

– это свойство линейности определенного интеграла.

ò (f(x)+g(x)+...+h(x))dx = ò f(x)dx+ ò g(x)dx+...+ ò h(x)dx

ò (f(x)+g(x)+...+h(x))dx = (F(b) + G(b) +...+ H(b)) –

– (F(a) + G(a) +...+ H(a)) +C =

F(b)–F(a)+C1 +G(b)–G(a)+C2+...+H(b)–H(a)+Cn=

= ò f(x)dx+ ò g(x)dx+...+ ò h(x)dx

Набор стандартных картинок

S=ò f(x)dx + ò g(x)dx

Применение интеграла

I. В физике.

Работа силы (A=FScosa, cosa ¹ 1)

Если на частицу действует сила F, кинетическая энергия не остается постоянной. В этом случае согласно

приращение кинетической энергии частицы за время dt равно скалярному произведению Fds, где ds – перемещение частицы за время dt. Величина

называется работой, совершаемой силой F.

Пусть точка движется по оси ОХ под действием силы, проекция которой на ось ОХ есть функция f(x) (f–непрерывная функция). Под действием силы точка переместилась из точки S1(a) в S2(b). Разобьем отрезок на n отрезков, одинаковой длины Dx = (b – a)/n. Работа силы будет равна сумме работ силы на полученных отрезках. Т.к. f(x) –непрерывна, то при малом работа силы на этом отрезке равна f(a)(x1–a). Аналогично на втором отрезке f(x1)(x2–x1), на n-ом отрезке - f(xn–1)(b–xn–1). Следовательно работа на равна:

А » An = f(a)Dx +f(x1)Dx+...+f(xn–1)Dx=

= ((b–a)/n)(f(a)+f(x1)+...+f(xn–1))

Приблизительное равенство переходит в точное при n®¥

А = lim [(b–a)/n] (f(a)+...+f(xn–1))= ò f(x)dx (по определению)

Пусть пружина жесткости С и длины l сжата на половину свой длины. Определить величину потенциальной энергии Ер равна работе A, совершаемой силой –F(s) упругость пружины при её сжатии, то

Eп = A= – ò (–F(s)) dx

Из курса механики известно, что F(s)= –Cs.

Отсюда находим

Еп= – ò (–Cs)ds = CS2/2 | = C/2 l2/4

Ответ: Cl2/8.

Координаты центра масс

Центр масс – точка через которую проходит равнодействующая сил тяжести при любом пространственном расположении тела.

Пусть материальная однородная пластина о имеет форму криволинейной трапеции {x;y |a£x£b; 0£y£f(x)} и функция y=f(x) непрерывна на , а площадь этойкриволинейной трапеции равна S, тогда координаты центра масс пластины о находят по формулам:

x0 = (1/S) ò x f(x) dx; y0 = (1/2S) ò f 2(x) dx;

Центр масс.

Найти центр масс однородного полукруга радиуса R.

Изобразим полукруг в системе координат OXY.

y = (1/2S) òÖ(R2–x2)dx = (1/pR2) òÖ(R2–x2)dx =

= (1/pR2)(R2x–x3/3)|= 4R/3p

Ответ: M(0; 4R/3p)

Путь, пройденный материальной точкой

Если материальная точка движется прямолинейно со скоростью u=u(t) и за время T= t2–t1 (t2>t1) прошла путь S, то

В геометрии

Объём - количественная характеристика пространственного тела. За единицу измерения объёма принимают куб с ребром 1мм(1ди, 1м и т.д.).

Количество кубов единичного объёма размещенных в данном теле - объём тела.

Аксиомы объёма:

Объём - это неотрицательная величина.

Объём тела равен сумме объёмов тел, его составляющих.

Найдем формулу для вычисления объёма:

выберем ось ОХ по направлению расположения этого тела;

определим границы расположения тела относительно ОХ;

введем вспомогательную функцию S(x) задающую следующее соответствие: каждому x из отрезка поставим в соответствие площадь сечения данной фигуры плоскостью, проходящей через заданную точку x перпендикулярно оси ОХ.

разобьем отрезок на n равных частей и через каждую точку разбиения проведём плоскость перпендикулярную оси ОХ, при этом наше тело разобьется на части. По аксиоме

V=V1+V2+...+Vn=lim(S(x1)Dx +S(x2)Dx+...+S(xn)Dx

Dx®0, а Sk®Sk+1, а объем части, заключенной между двумя соседними плоскостями равна объему цилиндра Vц=SоснH.

Имеем сумму произведений значений функций в точках разбиения на шаг разбиения, т.е. интегральную сумму. По определению определенного интеграла, предел этой суммы при n®¥ называется интегралом a

V= ò S(x)dx, где S(x) – сечение плоскости, проходящей через

b выбранную точку перпендикулярно оси ОХ.

Для нахождения объема надо:

1). Выбрать удобным способом ось ОХ.

2). Определить границы расположения этого тела относительно оси.

3). Построить сечение данного тела плоскостью перпендикулярно оси ОХ и проходящей через соответственную точку.

4). Выразить через известные величины функцию, выражающую площадь данного сечения.

5). Составить интеграл.

6). Вычислив интеграл, найти объем.

Объем фигур вращения

Тело, полученное в результате вращения плоской фигуры, относительно какой-то оси, называют фигурой вращения.

Функция S(x) у фигуры вращения есть круг.

Sсеч(x)=p f 2(x)

Длина дуги плоской кривой

Пусть на отрезке функция y = f(x) имеет непрерывную производную y^ = f ^(x). В этом случае длину дуги l “куска” графика функции y = f(x), xÎ можно найти по формуле

l = ò Ö(1+f^(x)2)dx

Список литературы

М.Я.Виленкин, О.С.Ивашев–Мусатов, С.И.Шварцбурд, “Алгебра и математический анализ”, Москва,1993г.

“Сборник задач по математическому анализу”, Москва,1996г.

И.В.Савельев, “Курс общей физики”, том 1, Москва, 1982г.

Для подготовки данной работы были использованы материалы с сайта http://referatovbank.ru/

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Реферат на тему: «Интеграл и его применение»

Студентки

мед. колледжа

№2 203 группы

Куликовой Марии

Санкт - Петербург 2010 год

Введение

Символ интеграла введен с 1675 г., а вопросами интегрального исчисления занимаются с 1696 г. Хотя интеграл изучают, в основном, ученые-математики, но и физики внесли свой вклад в эту науку. Практически ни одна формула физики не обходится без дифференциального и интегрального исчислений. Поэтому, я и решила исследовать интеграл и его применение.

История интегрального исчисления

История понятия интеграла тесно связана с задачами нахождения квадратур. Задачами о квадратуре той или иной плоской фигуры математики Древней Греции и Рима называли задачи на вычисление площадей. Латинское слово quadratura переводится как “придание квадратной формы”. Необходимость в специальном термине объясняется тем, что в античнoe время (и позднее, вплоть до XVIII столетия) еще не были достаточно развиты представления о действительных числах. Математики оперировали с их геометрическими аналогами или скалярными величинами, которые нельзя перемножать. Поэтому и задачи на нахождение площадей приходилось формулировать, например, так: «Построить квадрат, равновеликий данному кругу». (Эта классическая задача “о квадратуре круга” круга» не может, как известно, быть решена с помощью циркуля и линейки.)

Символ т введен Лейбницем (1675 г.). Этот знак является изменением латинской буквы S (первой буквы слова summ a) Само слово интеграл придумал Я. Бернулли (1690 г.). Вероятно, оно происходит от латинского integro, которое переводится как приводить в прежнее состояние, восстанавливать. (Действительно, операция интегрирования «восстанавливает» функцию, дифференцированием которой получена подынтегральная функция.) Возможно, происхождение термина инте грал иное: слово integer означает целый.

В ходе переписки И. Бернулли и Г. Лейбниц согласил ись с предложением Я. Бернулли. Тогда же, в 1696 г., появилось и название новой ветви математики-интегральное исчисление (calculus integralis), которое ввел И. Бернулли.

Другие известные термины, относящиеся к интегральному исчислению, появились заметно позднее. Употребляющееся сейчас название первообразная функция заменило бол ее раннее «примитивная функция», которое ввел Лагранж (1797 г.). Латинское слово primitivus переводится как «начальный»: F(x) = т f(x)dx - начальная (или первоначальная, или первообразная) для f (x), которая получается из F(x) дифференцированием.

В современной литературе множество всех первообразных для функции f(х) называется также неопределенным интегралом. Это понятие выделил Лейбниц, который заметил, что все первообразные функции отличаются на произвольную постоянную b, называют определенным интегралом (обозначение ввел К. Фурье (1768-1830), но пределы интегрирования указывал уже Эйлер).

Многие значительные достижения математиков Древней Греции в решении задач на нахождение квадратур (т.е. вычисление площадей) плоских фигур, а также кубатур (вычисление объемов) тел связаны с применением метода исчерпывания, предложенным Евдоксом Книдским (ок. 408 - ок. 355 до н.э.). С помощью этого метода Евдокс доказал, например, что площади двух кругов относятся как квадраты их диаметров, а объем конуса равен 1/3 объёма цилиндра, имеющего такие же основание и высоту.

Метод Евдокса был усовершенствован Архимедом. Основные этапы, характеризующие метод Архимеда: 1) доказывается, что площадь круга меньше площади любого описанного около него правильного многоугольника, но больше площади любого вписанного; 2) доказывается, что при неограниченном удвоении числа сторон разность площадей этих многоугольн иков стремится к нулю; 3) для вычисления площади круга остается найти значение, к которому стремится отношение площади правильного многоугольника при неограниченном удвоении числа его сторон.

С помощью метода исчерпывания, целого ряда других остроумных соображений (в том числе с привлечением моделей механики) Архимед решил многие задачи. Он дал оценку числа p (3.10/71

Архимед предвосхитил многие идеи интегрального исчисления. (Добавим, что практически и первые теоремы о пределах были доказаны им.) Но потребовалось более полутора тысяч лет, прежде чем эти идеи нашли четкое выражение и были доведены до уровня исчисления.

Математики XVII столетия, получившие многие новые результаты, учились на трудах Архимеда. Активно применялся и другой метод - метод неделимых, который также зародился в Древней Греции (он связан в первую очередь с атомистическими воззрениями Демокрита). Например, криволинейную трапецию (рис. 1, а) они представляли себе составленной из вертикальных отрезков длиной f(х), которым, тем не менее, приписывали площадь, равную бесконечно малой величине f(х)dx . В соответствии с таким пониманием искомая площадь считалась равной сумме

бесконечно большого числа бесконечно малых площадей. Иногда даже подчеркивалось, что отдельные слагаемые в этой сумме - нули, но нули особого рода, которые, сложенные в бесконечном числе, дают вполне определенную положительную сумму.

На такой кажущейся теперь по меньшей мере сомнительной основе И. Кеплер (1571-1630) в своих сочинениях “Новая астрономия”.

1609 г. и «Стереометрия винных бочек» (1615 г.) правильно вычислил ряд площадей (например, площадь фигуры ограниченной эллипсом) и объемов (тело разрезалось на 6ecконечно тонкие пластинки). Эти исследования были продолжены итальянскими математиками Б. Кавальери (1598-1647) и Э. Торричелли (1608-1647). Сохраняет свое значение и в наше время сформулированный Б. Кавальери принцип, введенный им при некоторых дополнительных предположениях.

Пусть требуется найти площадь фигуры, изображенной на рисунке 1, б, где кривые, ограничивающие фигуру сверху и снизу, имеют уравнения

y = f(x) и y=f(x)+c.

Представляя фигуру составленной из «неделимых», по терминологии Кавальери, бесконечно тонких столбиков, замечаем, что все они имеют общую длину с. Передвигая их в вертикальном направлении, можем составить из них прямоугольник с основанием b-а и высотой с. Поэтому искомая площадь равна площади полученного прямоугольника, т.е.

S = S1 = c (b - а).

Общий принцип Кавальери для площадей плоских фигур формулируется так: Пусть прямые некоторого пучка параллельных пересекают фигуры Ф1 и Ф2 по отрезкам равной длины (рис. 1, в). Тогда площади фигур Ф1 и Ф2 равны.

Аналогичный принцип действует в стереометрии и оказывается полезны м при нахождении объемов.

В XVII в. были сделаны многие открытия, относящиеся к интегральному исчислению. Так, П.Ферма уже в 1629 г. задачу квадратуры любой кривой у = хn, где п - целое (т.е по существу вывел формулу т хndx = (1/n+1)хn+1), и на этой основе решил ряд задач на нахождение центров тяжести. И. Кеплер при выводе своих знаменитых законов движения планет фактически опирался на идею приближенного интегрирования. И. Барроу (1630-1677), учитель Ньютона, близко подошел к пониманию связи интегрирования и дифференцирования. Большое значение имели работы по представлению функций в виде степенных рядов.

Однако при всей значимости результатов, полученных многими чрезвычайно изобретательными математиками XVII столетия исчисления еще не было. Необходимо было выделить общие идеи лежащие в основе решения многих частных задач, а также установить связь операций дифференцирования и интегрирования, дающую достаточно общий алгоритм. Это сделали Ньютон и Лейбниц, открывшие независимо друг от друга факт, известным под названием формулы Ньютона - Лейбница. Тем самым окончательно оформился общий метод. Предстояло еще научится находить первообразные многих функций, дать логические нового исчисления и т.п. Но главное уже было сделано: дифференциальное и интегральное исчисление создано.

Методы математического анализа активно развивались в следующем столетии (в первую очередь следует назвать имена Л. Эйлера, завершившего систематическое исследование интегрирования элементарных функций, и И. Бернулли). В развитии интегрального исчисления приняли участие русские математики М.В. Остроградский (1801-1862), В.Я. Буняковский (1804-1889), П.Л. Чебышев (1821-1894). Принципиальное значение имели, в частности, результаты Чебышева, доказавшего, что существуют интегралы, не выразимые через элементарные функции.

Строгое изложение теории интеграла появилось только в прошлом веке. Решение этой задачи связано с именами О. Коши, одного из крупнейших математиков, немецкого ученого Б. Римана (1826-1866), французского математика Г. Дарбу (1842-1917).

Ответы на многие вопросы, связанные с существованием площадей и объемов фигур, были получены с созданием К. Жорданом (1838-1922) теории меры.

Различные обобщения понятия интеграла уже в начале нашего столетия были предложены французскими математиками А. Лебегом (1875-1941) и А. Данжуа (188 4-1974), советским математиком А.Я. Хинчинчиным (1894-1959).

Определение и свойства интеграла

Если F(x) - одна из первообразных функции f(x) на промежутке J, то первообразная на этом промежутке имеет вид F(x)+C, где CОR.

Определение. Множество всех первообразных функции f(x) на промежутке J называется определенным интегралом от функции f(x) на этом промежутке и обозначается т f(x)dx.

т f(x)dx = F(x)+C,

где F(x) - некоторая первообразная на промежутке J.

f - подынтегральная функция, f(x) - подынтегральное выражение, x - переменная интегрирования, C - постоянная интегрирования.

Свойства неопределенного интеграла.

(т f(x)dx) ў = т f(x)dx,

т f(x)dx = F(x)+C, где F ў(x) = f(x)

(т f(x)dx) ў= (F(x)+C) ў= f(x)

т f ў(x)dx = f(x)+C - из определения.

т k f (x)dx = k т fў(x)dx

если k - постоянная и F ў(x)=f(x),

т k f (x)dx = k F(x)dx = k(F(x)dx+C1)= k т fў(x)dx

т (f(x)+g(x)+...+h(x))dx = т f(x)dx + т g(x)dx +...+ т h(x)dx

т (f(x)+g(x)+...+h(x))dx = т dx = т ўdx = F(x)+G(x)+...+H(x)+C= т f(x)dx + т g(x)dx +...+ т h(x)dx, где C=C1+C2+C3+...+Cn.

Интегрирование

Табличный способ.

Способ подстановки.

Если подынтегральная функция не является табличным интегралом, то возможно (не всегда) применить этот способ. Для этого надо:

разбить подынтегральную функцию на два множителя;

обозначить один из множителей новой переменной;

выразить второй множитель через новую переменную;

составить интеграл, найти его значение и выполнить обратную подстановку.

Примечание: за новую переменную лучше обозначить ту функцию, которая связана с оставшимся выражением.

1. т xЦ(3x2-1)dx;

Пусть 3x2-1=t (tі0), возьмем производную от обеих частей:

у dt 1 1 у 1 1 t 2 2 1 ---Ш

ф- t 2 = - ф t 2dt = - --- + C = -Ц 3x2-1 +C

т sin x cos 3x dx = т - t3dt = - - + C

Пусть cos x = t

Метод преобразования подынтегральной функции в сумму или разность:

т sin 3x cos x dx = 1/2 т (sin 4x + sin 2x) dx = 1/8 cos 4x - ј cos 2x + C

у x4+3x2+1 у 1 1

ф dx = ф(x2+2 - ---) dx = - x2 + 2x - arctg x + C

х x2+1 х x2+1 3

Примечание: при решении этого примера хорошо делать многочлены ”углом”.

По частям. Если в заданном виде взять интеграл невозможно, а в то же время, очень легко находится первообразная одного множителя и производная другого, то можно использовать формулу.

(u(x)v(x))"=u"(x)v(x)+u(x)v(x)

u"(x)v(x)=(u(x)v(x)+u(x)v"(x)

т u"(x)v(x)dx=т (u(x)v(x))"dx - т u(x)v"(x)dx

т u"(x)v(x)dx=u(x)v(x)dx - т u(x)v"(x)dx

т x cos (x) dx = т x dsin x = x sin x - т sin x dx = x sin x + cos x + C

Криволинейная трапеция

Определение. Фигура, ограниченная графиком непрерывной, знакопостоянной функции f(x), осью абцисс и прямыми x=a, x=b, называется криволинейной трапецией.

Способы нахождения площади криволинейной трапеции

Теорема. Если f(x) непрерывная и неотрицательная функция на отрезке , то площадь соответствующей криволинейной трапеции равна приращению первообразных.

Дано: f(x)- непрерывная неопр. функция, xО.

Доказать: S = F(b) - F(a), где F(x) - первообразная f(x).

Доказательство:

1) Рассмотрим вспомогательную функцию S(x). Каждому xО поставим в соответствие ту часть криволинейной трапеции, которая лежит левее прямой (рис. 2), проходящей через точку с этой абциссой и параллельно оси ординат.

Следовательно S(a)=0 и S(b)=Sтр

Докажем, что S(a) - первообразная f(x).

D(f) = D(S) =

S"(x0)= lim(S(x0+Dx) - S(x0) / Dx), при Dx®0 DS - прямоугольник

Dx®0 со сторонами Dx и f(x0)

S"(x0) = lim(Dx f(x0) /Dx) = lim f(x0)=f(x0): т.к. x0 точка, то S(x) -

Dx®0 Dx®0 первообразная f(x).

Следовательно по теореме об общем виде первообразной S(x)=F(x)+C.

Т.к. S(a)=0, то S(a) = F(a)+C

S = S(b)=F(b)+C = F(b)-F(a)

1). Разобьем отрезок на n равных частей. Шаг разбиения (рис. 3)

Dx=(b-a)/n. При этом Sтр=lim(f(x0)Dx+f(x1)Dx+...+f(xn))Dx=n®Ґ = lim Dx(f(x0)+f(x1)+...+f(xn))

При n®Ґ получим, что Sтр= Dx(f(x0)+f(x1)+...+f(xn))

Предел этой суммы называют определенным интегралом.

Сумма стоящая под пределом, называется интегральной суммой.

Определенный интеграл это предел интегральной суммы на отрезке при n®Ґ. Интегральная сумма получается как предел суммы произведений длины отрезка, полученного при разбиении области определения функции в какой либо точке этого интервала.

a - нижний предел интегрирования;

b - верхний.

Формула Ньютона-Лейбница.

Сравнивая формулы площади криволинейной трапеции делаем вывод:

если F - первообразная для b на , то

т f(x)dx = F(b)-F(a)

т f(x)dx = F(x) ф = F(b) - F(a)

Свойства определенного интеграла.

т f(x)dx = т f(z)dz

т f(x)dx = F(a) - F(a) = 0

т f(x)dx = - т f(x)dx

т f(x)dx = F(a) - F(b) т f(x)dx = F(b) - F(a) = - (F(a) - F(b))

Если a, b и c любые точки промежутка I, на котором непрерывная функция f(x) имеет первообразную, то

т f(x)dx = т f(x)dx + т f(x)dx

F(b) - F(a) = F(c) - F(a) + F(b) - F(c) = F(b) - F(a)

(это свойство аддитивности определенного интеграла)

Если l и m постоянные величины, то

т (lf(x) +m j(x))dx = l т f(x)dx + m тj(x))dx -

Это свойство линейности определенного интеграла.

т (f(x)+g(x)+...+h(x))dx = т f(x)dx+ т g(x)dx+...+ т h(x)dx

т (f(x)+g(x)+...+h(x))dx = (F(b) + G(b) +...+ H(b)) - (F(a) + G(a) +...+ H(a)) +C = F(b)-F(a)+C1 +G(b)-G(a)+C2+...+H(b)-H(a)+Cn=b b b = т f(x)dx+ т g(x)dx+...+ т h(x)dx

Набор стандартных картинок (рис. 4, 5, 6, 7, 8)

Рис. 4 Рис. 5

Рис. 6 Рис. 7

Т.к. f(x)<0, то формулу Ньютона-Лейбница составить нельзя, теорема верна только для f(x)і0.

Надо: рассмотреть симметрию функции относительно оси OX. ABCD®A"B"CD b

S(ABCD)=S(A"B"CD) = т -f(x)dx

S= т f(x)dx = т g(x)dx

S = т (f(x)-g(x))dx+т(g(x)-f(x))dx

S= т (f(x)+m-g(x)-m)dx =

т (f(x)- g(x))dx

т ((f(x)-g(x))dx

S= т (f(x)+m-g(x)-m)dx =

Т (f(x)- g(x))dx

Если на отрезке f(x)іg(x), то площадь между этими графиками равна

т ((f(x)-g(x))dx

Функции f(x) и g(x) произвольные и неотрицательные

S=т f(x)dx - т g(x)dx = т (f(x)-g(x))dx

Применение интеграла

В физике.

Работа силы (A=FScosa, cosa № 1)

Если на частицу действует сила F, кинетическая энергия не остается постоянной. В этом случае согласно

приращение кинетической энергии частицы за время dt равно скалярному произведению Fds, где ds - перемещение частицы за время dt. Величина

называется работой, совершаемой силой F.

Пусть точка движется по оси ОХ под действием силы, проекция которой на ось ОХ есть функция f(x) (f-непрерывная функция). Под действием силы точка переместилась из точки S1(a) в S2(b). Разобьем отрезок на n отрезков, одинаковой длины Dx = (b - a)/n. Работа силы будет равна сумме работ силы на полученных отрезках. Т.к. f(x) -непрерывна, то при малом работа силы на этом отрезке равна f(a)(x1-a). Аналогично на втором отрезке f(x1)(x2-x1), на n-ом отрезке - f(xn-1)(b-xn-1). Следовательно работа на равна:

А » An = f(a)Dx +f(x1)Dx+...+f(xn-1)Dx= ((b-a)/n)(f(a)+f(x1)+...+f(xn-1))

Приблизительное равенство переходит в точное при n®Ґ

А = lim [(b-a)/n] (f(a)+...+f(xn-1))= т f(x)dx (по определению)

Пусть пружина жесткости С и длины l сжата на половину свой длины. Определить величину потенциальной энергии Ер равна работе A, совершаемой силой -F(s) упругость пружины при её сжатии, то

Eп = A= - т (-F(s)) dx

Из курса механики известно, что F(s)= -Cs.

Отсюда находим

Еп= - т (-Cs)ds = CS2/2 | = C/2 l2/4

Ответ: Cl2/8.

Координаты центра масс

Центр масс - точка через которую проходит равнодействующая сил тяжести при любом пространственном расположении тела.

Пусть материальная однородная пластина о имеет форму криволинейной трапеции {x;y |aЈxЈb; 0ЈyЈf(x)} и функция y=f(x) непрерывна на , а площадь этойкриволинейной трапеции равна S, тогда координаты центра масс пластины о находят по формулам:

x0 = (1/S) т x f(x) dx; y0 = (1/2S) т f 2(x) dx;

Центр масс.

Найти центр масс однородного полукруга радиуса R.

Изобразим полукруг в системе координат OXY (рис. 9).

Из соображений симметрии и однородности замечаем, что абсцисса точки M

Функция, описывающая полукруг имеет вид:

Пусть S = pR2/2 - площадь полукруга, тогда

y = (1/2S) тЦ(R2-x2)dx = (1/pR2) тЦ(R2-x2)dx = -R -R

R = (1/pR2)(R2x-x3/3)|= 4R/3p

Ответ: M(0; 4R/3p)

Путь, пройденный материальной точкой

Если материальная точка движется прямолинейно со скоростью u=u(t) и за время T= t2-t1 (t2>t1) прошла путь S, то

В геометрии

Объём - количественная характеристика пространственного тела. За единицу измерения объёма принимают куб с ребром 1мм(1ди, 1м и т.д.).

Количество кубов единичного объёма размещенных в данном теле - объём тела.

Аксиомы объёма:

Объём - это неотрицательная величина.

Объём тела равен сумме объёмов тел, его составляющих.

Найдем формулу для вычисления объёма (рис. 10):

выберем ось ОХ по направлению расположения этого тела;

определим границы расположения тела относительно ОХ;

введем вспомогательную функцию S(x) задающую следующее соответствие: каждому x из отрезка поставим в соответствие площадь сечения данной фигуры плоскостью, проходящей через заданную точку x перпендикулярно оси ОХ.

разобьем отрезок на n равных частей и через каждую точку разбиения проведём плоскость перпендикулярную оси ОХ, при этом наше тело разобьется на части. По аксиоме

V=V1+V2+...+Vn=lim(S(x1)Dx +S(x2)Dx+...+S(xn)Dx

Dx®0, а Sk®Sk+1, а объем части, заключенной между двумя соседними плоскостями равна объему цилиндра Vц=SоснH.

Имеем сумму произведений значений функций в точках разбиения на шаг разбиения, т.е. интегральную сумму. По определению определенного интеграла, предел этой суммы при n®Ґ называется интегралом a

V= т S(x)dx, где S(x) - сечение плоскости, проходящей через

b выбранную точку перпендикулярно оси ОХ.

Для нахождения объема надо:

1). Выбрать удобным способом ось ОХ.

2). Определить границы расположения этого тела относительно оси.

3). Построить сечение данного тела плоскостью перпендикулярно оси ОХ и проходящей через соответственную точку.

4). Выразить через известные величины функцию, выражающую площадь данного сечения.

5). Составить интеграл.

6). Вычислив интеграл, найти объем.

Объем фигур вращения

Тело, полученное в результате вращения плоской фигуры, относительно какой-то оси, называют фигурой вращения.

Функция S(x) у фигуры вращения есть круг.

Sсеч(x)=p f 2(x)

Длина дуги плоской кривой

Пусть на отрезке функция y = f(x) имеет непрерывную производную y" = f "(x). В этом случае длину дуги l “куска” графика функции y = f(x), xО можно найти по формуле

l = т Ц(1+f"(x)2)dx

Список литературы

1. М.Я. Виленкин, О.С. Ивашев-Мусатов, С.И. Шварцбурд, “Алгебра и математический анализ”, Москва, 1993 г.

2. “Сборник задач по математическому анализу”, Москва, 1996 г.

3. И.В. Савельев, “Курс общей физики”, том 1, Москва, 1982 г.

4. Для подготовки данной работы были использованы материалы с сайта http://referatovbank.ru/

Подобные документы

    Идеи интегрального исчисления в работах древних математиков. Особенности метода исчерпывания. История нахождения формулы объема тора Кеплера. Теоретическое обоснование принципа интегрального исчисления (принцип Кавальери). Понятие определенного интеграла.

    презентация , добавлен 05.07.2016

    История интегрального исчисления. Определение и свойства двойного интеграла. Его геометрическая интерпретация, вычисление в декартовых и полярных координатах, сведение его к повторному. Применение в экономике и геометрии для вычисления объемов и площадей.

    курсовая работа , добавлен 16.10.2013

    Определение определенного интеграла, его свойства. Длина дуги кривой. Площадь криволинейной трапеции. Площадь поверхности вращения. Площади фигур, ограниченных графиками функций, ограниченных линиями, заданными уравнениями. Вычисление объемов тел.

    контрольная работа , добавлен 10.02.2017

    История появления понятия "интеграла" и интегрального исчисления, его особенности и значение. Интеграл как один из основных инструментов работы с функциями. Обоснование необходимости выражения всех физических явлений в виде математической формулы.

    презентация , добавлен 19.05.2014

    Определение криволинейного интеграла по координатам, его основные свойства и вычисление. Условие независимости криволинейного интеграла от пути интегрирования. Вычисление площадей фигур с помощью двойного интеграла. Использование формулы Грина.

    контрольная работа , добавлен 23.02.2011

    Способы вычисления интегралов. Формулы и проверка неопределенного интеграла. Площадь криволинейной трапеции. Неопределенный, определенный и сложный интеграл. Основные применения интегралов. Геометрический смысл определенного и неопределенного интегралов.

    презентация , добавлен 15.01.2014

    Решение задачи по нахождению площади криволинейной трапеции. Определение и свойства определённого интеграла. Необходимое условие интегрируемости и критерий Дарбу. Интегрируемость непрерывных и монотонных функций. Доказательство формулы Ньютона-Лейбница.

    контрольная работа , добавлен 25.03.2011

    Вычисление площадей плоских фигур. Нахождение определенного интеграла функции. Определение площади под кривой, площади фигуры, заключенной между кривыми. Вычисление объемов тел вращения. Предел интегральной суммы функции. Определение объема цилиндра.

    презентация , добавлен 18.09.2013

    Понятие определённого интеграла, расчет площади, объёма тела и длины дуги, статического момента и центра тяжести кривой. Вычисление площади в случае прямоугольной криволинейной области. Применение криволинейного, поверхностного и тройного интегралов.

    курсовая работа , добавлен 19.05.2011

    История интегрального и дифференциального исчисления. Приложения определенного интеграла к решению некоторых задач механики и физики. Моменты и центры масс плоских кривых, теорема Гульдена. Дифференциальные уравнения. Примеры решения задач в MatLab.

Интегральное исчисление – это раздел математического анализа, в котором изучаются интегралы, их свойства, способы вычисления и приложения. Вместе с дифференциальным исчислением оно составляет основу аппарата математического анализа.

Даты возникновения некоторых математических знаков

Значение

Когда знак введен, год

Знаки объектов

бесконечность

Дж. Валлис

отношение длины окружности к диаметру

корень квадратный из

неизвестные или переменные величины

Р. Декарт

Знаки операций

сложение

немецкие математики

конец XV в.

вычитание

умножение

У. Оутред

умножение

Г. Лейбниц

Г. Лейбниц

Р. Декарт

X. Рудольф

логарифм

И. Кеплер

Б. Кавальери

арксинус

Ж. Лагранж

дифференциал

Г. Лейбниц

интеграл

Г. Лейбниц

производная

Г. Лейбниц

определенный интеграл

факториал

У. Гамильтон

многие математики

И. Бернулли

Знаки отношений

равенство

Р. Рекорд

Т. Гарриот

сравнимость

параллельность

У. Оутред

перпендикулярность

П. Эригон

Интегральное исчисление возникло из рассмотрения большого числа задач естествознания и математики. Важнейшие из них – физическая задача определения пройденного за данное время пути по известной, но, быть может, переменной скорости движения и значительно более древняя задача вычисления площадей и объемов геометрических фигур (см. Геометрические задачи на экстремум).

Центральным в интегральном исчислении является понятие интеграла, которое, однако, имеет две различные трактовки, приводящие соответственно к понятиям неопределенного и определенного интегралов.

В дифференциальном исчислении была введена операция дифференцирования функций. Рассматриваемая в интегральном исчислении обратная к дифференцированию математическая операция называется интегрированием или, точнее, неопределенным интегрированием.

В чем же состоит эта обратная операция и в чем ее неопределенность?

Операция дифференцирования сопоставляет заданной функции ее производную . Допустим, что мы хотим, исходя из заданной функции , найти такую функцию , производной которой является функция , т. е. . Такая функция называется первообразной функции .

Значит, обратная дифференцированию операция – неопределенное интегрирование – состоит в отыскании первообразной данной функции.

Заметим, что, наряду с функцией , первообразной для функции , очевидно, будет также любая функция , отличающаяся от постоянным слагаемым : ведь .

Таким образом, в отличие от дифференцирования, сопоставлявшего функции единственную другую функцию – производную первой, неопределенное интегрирование приводит не к одной конкретной функции, а к целому набору функций, и в этом его неопределенность.

Однако степень этой неопределенности не так уж велика. Напомним, что если производная некоторой функции равна нулю во всех точках какого-то промежутка, то это функция, постоянная на рассматриваемом промежутке (на промежутках, где скорость изменения переменной величины везде равна нулю, она не меняется). Значит, если на каком-то промежутке , то функция постоянна на этом промежутке, поскольку ее производная равна нулю во всех точках промежутка.

Итак, две первообразные одной и той же функции могут отличаться на промежутке только постоянным слагаемым.

Первообразные функции обозначают символом

где знак читается: интеграл. Это так называемый неопределенный интеграл. По доказанному, неопределенный интеграл изображает на рассматриваемом промежутке не одну конкретную функцию, а любую функцию вида

, (1)

где - какая-то первообразная функции на данном промежутке, а - произвольная постоянная.

Например, на всей числовой оси

; ; .

Мы здесь специально обозначили аргументы подынтегральных функций различными символами: , чтобы обратить внимание на независимость первообразной как функции от выбора буквы, используемой для обозначения ее аргумента.

Проверка написанных равенств выполняется простым дифференцированием их правых частей, в результате которого получаются стоящие в левых частях под знаком интеграла функции , , соответственно.

Полезно иметь в виду также следующие очевидные соотношения, непосредственно вытекающие из определений первообразной, производной, дифференциала и из соотношения (1) для неопределенного интеграла:

, , , .

Отыскание первообразной часто облегчают некоторые общие свойства неопределенного интеграла:

(вынесение постоянного множителя);

(интегрирование суммы); если

,

(замена переменной).

Эти соотношения также проверяются непосредственно с использованием соответствующих правил дифференцирования.

Найдем закон движения свободно падающего в пустоте тела, исходя из единственного факта, что при отсутствии воздуха ускорение свободного падения вблизи поверхности Земли постоянно и не зависит от особенностей падающего тела. Фиксируем вертикальную координатную ось; направление на оси выберем в сторону к Земле. Пусть - координата нашего тела в момент . Нам известно, таким образом, что и - постоянная. Требуется найти функцию - закон движения.

Поскольку , где , то, последовательно интегрируя, находим

Итак, мы нашли, что

, (3)

где и - какие-то постоянные. Но падающее тело подчиняется все-таки одному конкретному закону движения, в котором уже нет никакого произвола. Значит, есть еще какие-то условия, которые мы пока не использовали; они позволяют среди всех «конкурирующих» законов (3) выбрать тот, который соответствует конкретному движению. Эти условия легко указать, если разобраться в физическом смысле постоянных и . Если сравнить крайние члены соотношения (2) при , то выяснится, что , а из (3) при получается, что . Таким образом, математика сама напомнила нам, что искомый закон движения

вполне определится, если указать начальное положение и начальную скорость тела. В частности, если и , получаем .

Отметим теперь, что между операцией нахождения производной (дифференцированием) и операцией отыскания первообразной (неопределенным интегрированием) имеется, кроме указанного выше, еще целый ряд принципиальных отличий. В частности, следует иметь в виду, что если производная любой комбинации элементарных функций сама выражается через элементарные функции, т.е. является элементарной функцией, то первообразная элементарной функции уже не всегда является функцией элементарной. Например, первообразная

элементарной функции (называемая интегральным синусом и обозначаемая специальным символом ), как можно доказать, не выражается в элементарных функциях. Таким образом, принципиальный математический вопрос о существовании первообразной у наперед заданной функции не надо смешивать с не всегда разрешимой задачей об отыскании этой первообразной среди элементарных функций. Интегрирование часто является источником введения важных и широко используемых специальных функций, которые изучены ничуть не хуже таких «школьных» функций, как или , хотя и не входят в список элементарных функций.

Наконец, отметим, что отыскание первообразной, даже когда она выражается в элементарных функциях, скорее напоминает искусство, чем канонический алгоритм вычислений, подобный алгоритму дифференцирования. По этой причине найденные первообразные наиболее часто встречающихся функций собраны в виде справочных таблиц неопределенных интегралов. Следующая микротаблица такого рода, очевидно, равносильна микротаблице производных соответствующих основных элементарных функций:

Мы, пока говорили об обращении операции дифференцирования, пришли в этой связи к понятиям первообразной, неопределенного интеграла и дали первоначальное определение этих понятий.

Теперь укажем иной, куда более древний подход к интегралу, который послужил основным первоначальным источником интегрального исчисления и привел к понятию определенного интеграла или интеграла в собственном смысле этого слова. Этот подход четко прослеживается уже у древнегреческого математика и астронома Евдокса Книдского (примерно 408-355 до н.э.) и Архимеда, т.е. он возник задолго до появления дифференциального исчисления и операции дифференцирования.

Вопрос, который рассматривали Евдокс и Архимед, создав при его решении «метод исчерпывания», предвосхитивший понятие интеграла – это вопрос о вычислении площади криволинейной фигуры. Ниже мы рассмотрим этот вопрос, а пока поставим, вслед за И. Ньютоном, следующую задачу: по известной в любой момент из промежутка времени скорости тела найти величину перемещения тела за этот промежуток времени.

Если бы был известен закон движения, т.е. зависимость координаты тела от времени, то ответ, очевидно, выражался бы разностью . Более того, если бы мы знали какую-либо первообразную функции на промежутке , то, поскольку , где - постоянная, можно было бы найти искомую величину перемещения в виде разности , которая совпадает с разностью . Это очень полезное наблюдение, однако если первообразную данной функции указать не удается, то действовать приходится совсем иначе.

Будем рассуждать следующим образом.

Если промежуток отдельными моментами , такими, что , разбить на очень мелкие временные промежутки , , то на каждом из этих коротких промежутков скорость тела не успевает заметно измениться. Фиксировав произвольно момент , можно таким образом приближенно считать, что на промежутке времени движение происходит с постоянной скоростью . В таком случае для величины пути, пройденного за промежуток времени , получаем приближенное значение , где . Складывая эти величины, получаем приближенное значение

для всего перемещения на промежутке .

Найденное приближенное значение тем точнее, чем более мелкое разбиение промежутка мы произведем, т.е. чем меньше будет величина наибольшего из промежутков , на которые разбит промежуток .

Значит, искомая нами величина перемещения есть предел

(5)

сумм вида (4), когда величина стремится к нулю.

Суммы специального вида (4) называются интегральными суммами для функции на промежутке , а их предел (5), получаемый при неограниченном мельчании разбиений, называется интегралом (или определенным интегралом) от функции на промежутке . Интеграл обозначается символом

в котором числа называются пределами интегрирования, причем - нижним, a - верхним пределом интегрирования; функция , стоящая под знаком интеграла, называется подынтегральной функцией; - подынтегральным выражением; - переменной интегрирования.

Итак, по определению,

. (6)

Значит, искомая величина перемещения тела за временной промежуток при известной скорости движения выражается интегралом (6) от функции по промежутку .

Сопоставляя этот результат с тем, который на языке первообразной был указан в начале рассмотрения этого примера, приходим к знаменитому соотношению:

если . Равенство (7) называется формулой Ньютона-Лейбница. В левой его части стоит понимаемый как предел (6) интеграл, а в правой – разность значений (в концах и промежутка интегрирования) функции , первообразной подынтегральной функции . Таким образом, формула Ньютона-Лейбница связывает интеграл (6) и первообразную. Этой формулой можно, следовательно, пользоваться в двух противоположных направлениях: вычислять интеграл, найдя первообразную, или получать приращение первообразной, найдя из соотношения (6) интеграл. Мы увидим ниже, что оба эти направления использования формулы Ньютона-Лейбница весьма важны.

Интеграл (6) и формула (7) в принципе решают поставленную в нашем примере задачу. Так, если (как это имеет место в случае свободного падения, начинающегося из состояния покоя, т.е. с ), то, найдя первообразную функции по формуле (7), получаем величину

перемещения за время, прошедшее от момента до момента .

На основе разобранной только что физической задачи, приведшей нас к интегралу и формуле Ньютона-Лейбница, обобщая сделанные наблюдения, можно теперь сказать, что если на некотором промежутке задана функция , то, разбивая промежуток точками , составляя интегральные суммы

где , , и переходя к пределу при , где , мы получаем по определению интеграл

(6")

от функции по промежутку . Если при этом на , т.е. - первообразная функции на промежутке , то имеет место формула Ньютона-Лейбница:

. (7)

ЛЕОНАРД ЭЙЛЕР
(1707-1783)

Эйлер, крупнейший математик XVIII в., родился в Швейцарии. В 1727 г. по приглашению Петербургской академии наук он приехал в Россию. В Петербурге Эйлер попал в круг выдающихся ученых: математиков, физиков, астрономов, получил большие возможности для создания и издания своих трудов. Он работал с увлечением и вскоре стал, по единодушному признанию современников, первым математиком мира.

Научное наследие Эйлера поражает своим объемом и разносторонностью. В списке его трудов более 800 названий. Полное собрание сочинений ученого занимает 72 тома. Среди его работ – первые учебники по дифференциальному и интегральному исчислению.

В теории чисел Эйлер продолжил деятельность французского математика П. Ферма и доказал ряд утверждений: малую теорему Ферма, великую теорему Ферма для показателей 3 и 4 (см. Ферма великая теорема). Он сформулировал проблемы, которые определили горизонты теории чисел на десятилетия.

Эйлер предложил применить в теории чисел средства математического анализа и сделал первые шаги по этому пути. Он понимал, что, двигаясь дальше, можно оценить число простых чисел, не превосходящих , и наметил утверждение, которое затем докажут в XIX в. математики П. Л. Чебышев и Ж. Адамар.

Эйлер много работает в области математического анализа. Здесь он постоянно пользуется комплексными числами. Его имя носит формула , устанавливающая связь тригонометрических и показательной функций, возникающую при использовании комплексных чисел.

Ученый впервые разработал общее учение о логарифмической функции, согласно которому все комплексные числа, кроме нуля, имеют логарифмы, причем каждому числу соответствует бесчисленное множество значений логарифма.

В геометрии Эйлер положил начало совершенно новой области исследований, выросшей впоследствии в самостоятельную науку – топологию.

Имя Эйлера носит формула, связывающая число вершин (В), ребер (Р) и граней (Г) выпуклого многогранника: .

Даже основные результаты научной деятельности Эйлера трудно перечислить. Здесь и геометрия кривых и поверхностей, и первое изложение вариационного исчисления с многочисленными новыми конкретными результатами. У него были труды по гидравлике, кораблестроению, артиллерии, геометрической оптике и даже по теории музыки. Он впервые дает аналитическое изложение механики вместо геометрического изложения Ньютона, строит механику твердой точки или твердой пластины.

Одно из самых замечательных достижений Эйлера связано с астрономией и небесной механикой. Он построил точную теорию движения Луны с учетом притяжения не только Земли, но и Солнца. Это пример решения очень трудной задачи.

Последние 17 лет жизни Эйлера были омрачены почти полной потерей зрения. Но он продолжал творить так же интенсивно, как в молодые годы. Только теперь он уже не писал сам, а диктовал ученикам, которые проводили за него наиболее громоздкие вычисления.

Для многих поколений математиков Эйлер был учителем. По его математическим руководствам, книгам по механике и физике училось несколько поколений. Основное содержание этих книг вошло и в современные учебники.

Итак, определены важнейшие понятия интегрального исчисления и получена формула Ньютона-Лейбница, связывающая интегрирование и дифференцирование.

Подобно тому как в дифференциальном исчислении к понятию производной вела не только задача определения мгновенной скорости движения, но и задача проведения касательной, так в интегральном исчислении к понятию интеграла приводит не только физическая задача определения пройденного пути по заданной скорости движения, но и многие другие задачи, и в их числе древние геометрические задачи о вычислении площадей и объемов.

Пусть требуется найти площадь изображенной на рис. 1 фигуры (называемой криволинейной трапецией), верхняя «сторона» которой есть график заданной на отрезке функции . Точками разобьем отрезок на мелкие отрезки , в каждом из которых фиксируем некоторую точку . Площадь узкой криволинейной трапеции, лежащей над отрезком , заменим приближенно площадью соответствующего прямоугольника с основанием и высотой . В таком случае приближенное значение площади всей фигуры даст знакомая нам интегральная сумма , а точное значение искомой площади получится как предел таких сумм, когда длина наибольшего из отрезков разбиения стремится к нулю. Таким образом, получаем:

Попробуем теперь вслед за Архимедом выяснить, в каком отношении парабола делит площадь изображенного на рис. 2 единичного квадрата. Для этого попросту вычислим, исходя из формулы (8), площадь нижнего параболического треугольника. В нашем случае и . Нам известна первообразная функции , значит, можно воспользоваться формулой (7") Ньютона-Лейбница и без труда получить

.

Следовательно, парабола делит площадь квадрата в отношении 2:1.

При обращении с интегралами, особенно применяя формулу Ньютона-Лейбница, можно пользоваться общими свойствами неопределенного интеграла, которые названы в начале статьи. В частности, правило замены переменной в неопределенном интеграле при условии, что , , с учетом формулы Ньютона-Лейбница позволяет заключить, что

и таким образом, получается очень полезная формула замены переменной в определенном интеграле:

. (9)

С помощью интегралов вычисляют также объемы тел. Если изображенную на рис. 1 криволинейную трапецию вращать вокруг оси , то получится тело вращения, которое приближенно можно считать составленным из узких цилиндров (рис. 3), полученных при вращении соответствующих прямоугольников. Сохраняя прежние обозначения, записываем объем каждого из этих цилиндров в виде (произведение площади основания на высоту ). Сумма дает приближенное значение объема рассматриваемого тела вращения. Точное значение получится как предел таких сумм при . Значит,

. (10)

В частности, чтобы вычислить объем изображенного на рис. 4 конуса, достаточно положить в формуле (10) , и , где - угловой коэффициент вращаемой прямой. Найдя первообразную функции и воспользовавшись формулой Ньютона-Лейбница, получаем

где площадь круга, лежащего в основании конуса.

В разобранных примерах мы исчерпывали геометрическую фигуру такими фигурами, площади или объемы которых могли вычислить, а затем делали предельный переход. Этот прием, идущий от Евдокса и развитый Архимедом, называется методом исчерпывания. Это наиболее распространенный метод рассуждений в большинстве применений интеграла.

«Поскольку бочки связаны с кругом, конусом и цилиндром – фигурами правильными, тем самым они поддаются геометрическим изменениям». И. Кеплер

Смысл – там, где змеи интеграла. Меж цифр и букв, меж и ! В. Я. Брюсов