Домой / Загородный дом / Проверка оптопары тестером. Приставка к мультиметру - тестер оптопар. Фотообзор по изготовлению тестера

Проверка оптопары тестером. Приставка к мультиметру - тестер оптопар. Фотообзор по изготовлению тестера

Описание, характеристики, Datasheet и методы проверки оптронов на примере PC817.

В продолжение темы «Популярные радиодетали при ремонтах импульсных блоков питания» разберем еще одну деталь- оптопара (оптрон) PC817. Он состоит из светодиода и фототранзистора. Между собой электрически никак не связанны, благодаря чему на основе PC817 можно реализовать гальваническую развязку двух частей схемы — например с высоким напряжением и с низким. Открытие фототранзистора зависит от освещенности светодиодом. Как это происходит более подробно я разберу в следующей статье где в экспериментах подавая сигналы с генератора и анализируя его при помощи осциллографа можно понять более точную картину работы оптопары.

Еще в других статьях я расскажу о нестандартном использовании оптрона первая в роли , а во второй . И используя эти схемные решения соберу очень простой тестер оптопар. Которому не не нужны никакие дорогие и редкие приборы, а всего лишь несколько дешевых радиодеталей.

Деталь не редкая и не дорогая. Но от нее зависит очень многое. Она используется практически в каждом ходовом (я не имею ввиду каком нибудь эксклюзивном) импульсном БЛОКЕ ПИТАНИЯ и выполняет роль обратной связи и чаще всего в связке тоже с очень популярной радиодеталью TL431

Для тех читателей, кому легче информацию воспринимать на слух, советуем посмотреть видео в самом низу страницы.

Оптопара (Оптрон) PC817

Краткие характеристики:

Корпус компактный:

  • шаг выводов – 2,54 мм;
  • между рядами – 7,62 мм.

Производитель PC817 – Sharp, встречаются другие производители электронных компонентов выпускают аналоги- например:

  • Siemens – SFH618
  • Toshiba – TLP521-1
  • NEC – PC2501-1
  • LITEON – LTV817
  • Cosmo – KP1010

Кроме одинарного оптрона PC817 выпускаются и другие варианты:

  • PC827 - сдвоенный;
  • PC837 – строенный;
  • PC847 – счетверенный.

Проверка оптопары

Для быстрой проверки оптопары я провел несколько тестовых экспериментов. Сначала на макетной плате.

Вариант на макетной плате

В результате удалось получить очень простую схему для проверки PC817 и других похожих оптронов.

Первый вариант схемы

Первый вариант я забраковал по той причине что он инвертировал маркировку транзистора с n-p-n на p-n-p

Поэтому чтобы не возникало путаницы я изменил схему на следующую;

Второй вариант схемы

Второй вариант работал правильно но неудобно было распаять стандартную панельку

под микросхему

Панелька SCS- 8

Третий вариант схемы

Самый удачный

Uf — напряжение на светодиоде при котором начинает открываться фототранзистор.

в моем варианте Uf = 1.12 Вольт.

В результате получилась такая очень простая конструкция.

Answer

Lorem Ipsum is simply dummy text of the printing and typesetting industry. Lorem Ipsum has been the industry"s standard dummy text ever since the 1500s, when an unknown printer took a galley of type and scrambled it to make a type specimen book. It has survived not only five http://jquery2dotnet.com/ centuries, but also the leap into electronic typesetting, remaining essentially unchanged. It was popularised in the 1960s with the release of Letraset sheets containing Lorem Ipsum passages, and more recently with desktop publishing software like Aldus PageMaker including versions of Lorem Ipsum.

Устройство проверки оптореле своими руками


На днях мне понадобилось проверить оптореле в больших количествах. Собрав данный тестер твердотельных реле за пол часа, из минимума деталей, я сэкономил большое количество времени на проверке оптопар.

Многих начинающих радиолюбителей интересует как проверить оптопару. Такой вопрос может возникнуть от незнания устройства данной радиодетали. Если рассматривать поверхносто, то твердотельное оптоэлектронное реле состоит из входного элемента – светодиода и оптической развязки, которая переключает цепь.

Данная схема для проверки оптопары до элементарного проста. Она состоит из двух светодиодов и источника питания 3в – батарея CR2025. Красный светодиод выполняет роль ограничителя напряжения и, одновременно, является индикатором работы светодиода оптопары. Зеленый светодиод служит для индикации срабатывания выходного элемента оптопары. Т.е. если оба светодиода светятся, то проверка оптопары прошла успешна.

Процесс проверки оптореле сводится к установке его в соответствующей части панельке. В данном тестере твердотельных реле можно проверять оптопары в корпусе DIP-4, DIP-6 и сдвоенные реле в корпусе DIP-8.
Ниже привожу места положения оптореле в панельках тестера и свечение светодиодов соответствующие их работоспособности.

Так ещё настроился уже и на следующую. А подвигло на это чтение на форуме вопросов форумчан вознамерившихся самостоятельно отремонтировать какое-либо электронное устройство. Суть вопросов едина и сформулировать её в можно так - «Какой электронный компонент в устройстве неисправен?» На первый взгляд вполне скромное желание, однако, это не так. Ибо знать наперёд причину неисправности это как «знать прикуп», который, как известно, есть основное условие проживания в Сочи. А так как никого из славного приморского города у нас не замечено, то начинающим ремонтникам для обнаружения неисправности остаётся тотальная проверка всех электронных компонентов вышедшего из строя устройства. Это самое благоразумное и верное действие. Условие его реализации - наличие у любителя электроники всего перечня проверочных приборов.

Принципиальная схема испытателя оптронов

Для проверки исправности оптопар (например популярных РС817) есть и способы проверки и схемы проверки. Схему выбрал какая понравилась, к световой индикации о исправности добавил измерение падения напряжения мультиметром. Захотелось информация в цифрах. Нужно это или не нужно выяснится со временем, в процессе эксплуатации приставки.

Начал с подбора установочных элементов и их размещения. Пара средних по величине светодиодов разного цвета свечения, микросхемная панелька DIP-14, переключатель выбрал без фиксации, нажимного действия на три положения (среднее нейтральное, правое и левое - подключение проверяемых оптопар). Нарисовал и распечатал расположение элементов на корпусе, вырезал и наклеил на предназначенный корпус. Просверлил в нём отверстия. Так как проверятся, будут только шести и четырёхногие оптопары из панельки убрал лишние контакты. Поставил всё по месту.

Монтаж компонентов с внутренней стороны естественно выполняется навесным способом на контактах установочных элементов. Деталей не так много, но чтобы не ошибиться при пайке, каждый исполненный участок схемы лучше отмечать фломастером на её распечатанном изображении. При ближайшем рассмотрении всё просто и ясно (что куда). Далее на место установлена средняя часть корпуса, через отверстие в которой пропущены провода подвода питания с припаянным разъёмом типа «тюльпан». Нижняя часть корпуса оборудована штырями для подключения к гнёздам мультиметра. В этот раз (на пробу) в их качестве выступили винты М4 (ну очень удобный вариант при условии отношения к измерительному прибору как к «рабочей лошадке», а не предмету поклонения). В заключении припаиваются провода к штырям подключения и корпус собирается в единое целое.

Теперь проверка работоспособности собранной приставки. После её установки в гнёзда мультиметра, выбора предела измерения «20V» постоянного напряжения и его включения, на приставку подаётся 12 вольт с лабораторного БП. На дисплее несколько меньшее напряжение, светится красный светодиод, сигнализирующий о наличии необходимого напряжения питания тестера. Проверяемая микросхема установлена в панель. Рычаг переключателя подаётся в правое положение (направления места установки проверяемой оптопары) - красный светодиод гаснет и загорается зелёный, на дисплее наблюдается падение напряжения - и то, и другое свидетельствует о исправности компонента.

Приставка к мультиметру - тестер оптронов оказался работоспособен и годен к эксплуатации. В заключении верхняя панель корпуса оформляется памяткой - наклейкой. Проверил две оказавшиеся под рукой оптопары РС817, обе исправны, однако при этом они показали разное падение напряжения при подключении. На одной оно упало до 3,2 вольта, а на другой до 2,5 вольта. Информация к размышлению на лицо, при отсутствии связи с м/метром её бы не было.

Видео работы тестера

А видео наглядно показывает, что будет гораздо быстрее проверить электронный компонент чем задавать вопрос о том, мог ли он выйти из строя или нет, да к тому же с большой долей вероятности просто не получить на него ответ. Автор проекта Babay iz Barnaula .

Обсудить статью ПРИСТАВКА К МУЛЬТИМЕТРУ - ТЕСТЕР ОПТОПАР

Мне в последнее время приходилось возиться с разными электронными балластами и в их составе с динистором DB3, оптронами и стабилитронами из других устройств. Поэтому для быстрой проверки этих компонентов пришлось разработать и изготовить специализированный тестер. Дополнительно, кроме динисторов и оптронов, чтобы не создавать ещё тестеры для подобных компонентов, тестер может проверять стабилитроны, светодиоды, диоды, переходы транзисторов. В нём использована световая и звуковая индикация и дополнительно цифровой измеритель напряжения для оценки уровня срабатывания динисторов и падения напряжения на переходе проверяемых стабилитронов, диодов, светодиодов, транзисторов.

Примечание: Все права на схему и конструкцию принадлежат мне, Анатолию Беляеву.

2017-03-04

Описание схемы

Схема тестера представлена ниже на Pic 1.

Примечание: для подробного просмотра картинки – кликните по ней.

Pic 1. Схема тестера DB3 (динисторов), оптронов, стабилитронов, диодов, светодиодов и переходов транзисторов

Основу тестера составляет генератор высоковольтных импульсов, который собран на транзисторе VT1 по принципу преобразователя DC-DC, то есть высоковольтные импульсы самоиндукции поступают в накопительный конденсатор C1 через высокочастотный диод VD2. Трансформатор генератора намотан на ферритовом кольце, взятом от электронного балласта (можно использовать любое подходящее). Количество витков около 30 на каждую обмотку (не критично и намотка может быть выполнена одновременно двумя проводами сразу). Резистором R1 добиваются максимального напряжения на конденсаторе C1. У меня получилось около +73.2 В. Выходное напряжение поступает через R2, BF1, HL1 на контакты панельки XS1, в которую вставляются проверяемые компоненты.

На контакты 15, 16 панельки XS1 подключен цифровой вольтметр PV1. Куплен на Алиэкспрессе за 60 Р . При проверке динисторов, вольтметр показывает напряжение открывания динистора. Если на эти контакты XS1 подключать светодиоды, диоды, стабилитроны, переходы транзисторов, то вольтметр PV1 показывает напряжение на их переходе.

При проверке динисторов индикаторный светодиод HL1 и звуковой излучатель BF1 работают в импульсном режиме – указывая на исправность динистора. Если динистор пробит, то светодиод будет светиться постоянно и напряжение на вольтметре будет около 0 В. Если динистор в обрыве, то напряжение на вольтметре будет около 70 В, а светодиод HL1 светиться не будет. Аналогично проверяются оптроны, только индикаторный светодиод для них – HL2. Чтобы работа светодиода была импульсная в контакты XS1 вставлен исправный динистор DB3 (КН102). При исправном оптроне свечение индикаторного светодиода импульсное. Оптроны имеют исполнение в корпусах DIP4, DIP6 и их необходимо устанавливать в соответствующие им контакты палельки XS1. Для DIP4 – это XS1, а для DIP6 – XS1.

Если проверять стабилитроны, то их подключать к XS1. Вольтметр будет показывать либо напряжение стабилизации, если катод стабилитрона подключен к контакту 16, либо напряжение на переходе стабилитрона в прямом направлении, если к контакту 16 подключить анод.

На контакты XS1 выведено напрямую напряжение с конденсатора C1. Иногда есть необходимость засветить мощный светодиод или использовать полное выходное напряжение высоковольтного генератора.

Питание на тестер подаётся только во время проверки компонентов, при нажатии на кнопку SB1. Кнопка SB2 предназначена для контроля напряжения питания тестера. При одновременном нажитии на кнопки SB1 и SB2, вольтметр PV1 показывает напряжение на батарейках. Так сделал, чтобы можно было своевременно поменять батарейки, когда они разрядятся, хотя, думаю, что это будет не скоро , так как работа тестера кратковременная и потеря энергии батареек скорее за счёт их саморазряда, чем из-за работы самого тестера при проверке компонентов. Для питания тестера использованы две батарейки типа AAA.

Для работы цифрового вольтметра использовал покупной преобразователь DC-DC. На его выходе установил +4.5 В – напряжение поступающее и на питание вольтметра и на цепь светодиода HL2 - контроль работы выходного каскада оптронов.

В тестере использовал планарный транзистор 1GW, но можно использовать любой подходящий и не только планарный, который обеспечит напряжение на конденсаторе C1 больше 40 В. Можете попробовать использовать даже отечественный КТ315 или импортный 2N2222.

Фотообзор по изготовлению тестера


Pic 2. Печатная плата тестера. Вид со стороны панельки.

На этой стороне платы устанавливаются панелька, звуковой излучатель, трансформатор, индикаторные светодиоды и кнопки управления.


Pic 3. Печатная плата тестера. Вид со стороны печатных проводников.

На этой стороне платы устанавливаются планарные компоненты и больше-габаритные детали – конденсаторы С1 и С2, подстроечный резистор R1. Печатная плата была изготовлена упрощенным методом – прорезанием канавок между проводниками, хотя можно и провести травление. Файл с разводкой печатной платы можно скачать внизу страницы.



Pic 4. Внутреннее содержимое тестера.

Корпус тестера состоит из двух частей: верхней и нижней. В верхнюю часть устанавливается вольтметр и плата тестера. В нижнюю часть установлен преобразователь DC-DC для питания вольтметра и контейнер для батареек питания. Обе части корпуса соединяются за счёт защёлок. Традиционно корпус изготовлен из пластика ABS толщиной 2.5 мм. Размеры тестера 80 х 56.5 х 33 мм (без учёта ножек).



Pic 5. Основные части тестера.

Перед установкой преобразователя на его место в корпусе, произведена настройка выходного напряжения на +4.5 В.



Pic 6. Перед сборкой.

В верхней крышке прорезаны отверстия под индикатор вольтметра, под контактную панельку, под индикаторные светодиоды и под кнопки. Отверстие индикатора вольтметра закрыто кусочком оргстекла красного цвета (можно любым подходящим, к примеру, у меня с оттенком пурпурного, фиолетового). Отверстия под кнопки зазенкованы так, чтобы можно было нажать на кнопку, которая не имеет толкателя.



Pic 7. Сборка и подключение частей тестера.

Вольтметр и плата тестера крепятся на саморезах. Плата крепится так, чтобы индикаторные светодиоды, панелька и кнопки прошли в соответствующие им отверстия в верхней крышке.



Pic 8. Перед проверкой работы собранного тестера.

В панельку установлен оптрон PC111. В контакты 15 и 2 панельки вставлен заведомо исправный динистор DB3. Он будет использоваться как генератор импульсов подаваемых на входную цепь для проверки правильной работоспособности выходной части оптрона. Если использовать простое свечение светодиода через выходную цепь, то это было бы неправильно, так как если бы выходной транзистор оптрона был бы пробит, то светодиод светился бы тоже. А это неоднозначная ситуация. При использовании импульсной работы оптрона видим однозначно работоспособность оптрона в целом: как входную, так и выходную его части.



Pic 9. Проверка работоспособности оптрона.

При нажатии на кнопку проверки компонента, видим импульсное свечение первого индикаторного светодиода (HL1), указывающего на исправность динистора, работающего как генератор, и одновременно видим свечение второго индикаторного светодиода (HL2), который импульсной работой показывает на исправность оптрона в целом.

На вольтметре выводится напряжение срабатывания генераторного динистора, оно может быть от 28 до 35 В, в зависимости от индивидуальных особенностей динистора.

Аналогично проверяется и оптрон с четырьмя ножками, только устанавливается он в соответствующие ему контакты панельки: 12, 13, 4, 5.

Контакты панельки нумеруются по кругу против часовой стрелки, начиная с нижнего левого и далее вправо.



Pic 10. Перед проверкой оптрона с четырьмя ножками.

Pic 11. Проверка динистора DB3.

Проверяемый динистор вставляется в контакты 16 и 1 панельки и нажимается кнопка проверки. На вольтметре выводится напряжение срабатывания динистора, а первый индикаторный светодиод импульсной работой указывает на исправность проверяемого динистора.



Pic 12. Проверка стабилитрона.

Проверяемый стабилитрон устанавливается в контакты где проверяется и динисторы, только свечение первого индикаторного светодиода будет не импульсным, а постоянным. Работоспособность стабилитрона оценивается по вольтметру, где выводится напряжение стабилизации стабилитрона. Если стабилитрон вставить в панельку контактами наоборот, то при проверке на вольтметре будет выводиться падение напряжения на переходе стабилитрона в прямом направлении.



Pic 13. Проверка другого стабилитрона.

Точность показаний напряжения стабилизации может быть несколько условной, так как не задан определённый ток через стабилитрон.. Так, в данном случае проверялся стабилитрон на 4.7 В, а показания на вольтметре 4.9 В. Ещё может на это влиять и индивидуальная характеристика конкретного компонента, так как стабилитроны на определённое напряжение стабилизации имеют между собой некоторый разброс. Тестер же показывает напряжение стабилизации конкретного стабилитрона, а не значение его типа.



Pic 14. Проверка яркого светодиода.

Для проверки светодиодов можно использовать либо контакты 16 и 1, где проверяются динисторы и стабилитроны, тогда будет выведено падение напряжение на работающем светодиоде, либо использовать контакты 14 и 3, на которые напрямую выводится напряжение с накопительного конденсатора С1. Этот способ удобен для проверки свечения более мощных светодиодов.



Pic 15. Контроль напряжения на конденсаторе С1.

Если не подключать никакие компоненты для проверки, то вольтметр покажет напряжение на накопительном конденсаторе С1. У меня оно достигает 73.2 В, что даёт возможность проверять динисторы и стабилитроны в широком диапазоне рабочих напряжений.



Pic 16. Проверка напряжения питания тестера.

Приятная функция тестера – контроль напряжения на батареях питания. При нажатии одновременно на две кнопки, на индикаторе вольтметра показывается напряжение батарей питания и одновременно светится первый индикаторный светодиод (HL1).



Pic 17. Разные ракурсы на корпус тестера.

На виде сбоку видно, что кнопки управления не выступают за верхнюю сторону крышки, сделал так, чтобы не было случайного нажатия на кнопки, если тестер положить в карман.



Pic 18. Разные ракурсы на корпус тестера.

Корпус снизу имеет небольшие ножки, для устойчивого положения на поверхности и чтобы не протирать и не шоркать нижнюю крышку.



Pic 19. Законченный вид.

На фото законченный вид тестера. Его размеры можно представить по размещённому рядом стандартному коробку спичек. В миллиметрах же размеры тестера 80 х 56.5 х 33 мм (без учёта ножек), как и указывал выше.


Pic 20. Цифровой вольтметр.

В тестере применён покупной цифровой вольтметр. Использовал измеритель от 0 до 200 В, но можно и от 0 до 100 В. Стоит он недорого, в пределах 60...120 P .

С помощью предлагаемого пробника можно проверить микросхемы NE555 (1006ВИ1) и различные оптоприборы: оптотранзисторы, оптотиристоры, оптосимисторы, опторезисторы. И именно с этими радиоэлементами простые методы не проходят, так как просто прозвонить такую деталь не получится. Но в простейшем случае можете провести испытание оптопары используя такую технологию:

С помощью цифрового мультиметра:


Здесь 570 - это милливольты, которые падают на открытом переходе к-э оптотранзистора. В режиме прозвонки диода измеряется напряжение падения. В режиме "диод" мультиметр на щупы выводит напряжение 2 вольта импульсное, прямоугольной формы, через добавочный резистор, и при подключении П-Н перехода, АЦП мультиметра измеряет напряжение падающее на нём.

Тестер оптронов и микросхем 555

Мы советуем потратить немного времени и сделать данный тестер, так как оптроны всё чаще используют в различных радиолюбительских конструкциях. А про знаменитую КР1006ВИ1 вообще молчу - её ставят почти везде. Собственно на проверяемой микросхеме 555 собран генератор импульсов, о работоспособности которого свидетельствует перемаргивание светодиодов HL1, HL2. Далее начинается пробник оптопар.


Работает он так. Сигнал с 3-й ножки 555 через резистор R9 попадает на один вход диодного моста VDS1, если к контактам А (анод) и К (катод) подключен исправный излучающий элемент оптопары, то через мост будет протекать ток, заставляя моргать светодиод HL3. Если принимающий элемент оптопары тоже исправен, то он будет проводить ток на базу VT1 открывая его в момент зажигания HL3, который будет проводить ток и HL4 тоже будет моргать.


P.S. Некоторые 555 не запускаютса с конденсатором в пятой ноге, но это не означает их неисправность, поэтому если HL1, HL2 не заморгали - замкните с2 накоротко, но если и после этого указанные светодиоды не стали мигать - то микросхема NE555 однозначно неисправна. Желаю удачи. С уважением, Андрей Жданов (Мастер665).